我正在研究第三版算法导论中的问题4-3。然后要求我找到T(n)的渐近上下限:
T(n)= 4T(n / 3)+ n lg(n)
我已经在线浏览了该解决方案,并且解决方案显示:
根据大师定理,我们得到T(n)∈Θ(n log 3 (4))
我认为该解决方案假设n log 3 4 渐近大于n lg(n)?但是为什么这是真的呢?如果有人可以帮助我理解我,我将不胜感激!
答案 0 :(得分:0)
用外行的话来说:
我们需要比较# the upstream component nginx needs to connect to
upstream django {
server unix:///my-app/socketfiles/nginx-django.sock; # for a file socket
#server 127.0.0.1:8001; # for a web port socket (we'll use this first)
}
# configuration of the server
server {
# the port your site will be served on
listen 8443;
# the domain name it will serve for
server_name example.com; # substitute your machine's IP address or FQDN
charset utf-8;
# max upload size
client_max_body_size 75M; # adjust to taste
# Django media
location /media {
alias /my-app/code/media; # your Django project's media files - amend as required
}
# Finally, send all non-media requests to the Django server.
location / {
uwsgi_pass django;
include /my-app/code/uwsgi_params; # the uwsgi_params file you installed
}
}
和n*log(n)
(n^1.25
)的增长情况
将两个函数除以n
log3(4)~1.26
两者都在增加。
这两个函数的导数
log(n) vs n^(1/4)
第二个函数的导数明显更大,因此第二个函数增长更快
We can see,这些函数的曲线相交,幂函数对于较大的n值变大-对于任何 n^(-1) vs n^(-3/4)