我查看了此链接中的代码: 2D Triangulation by John Ratcliff。 该代码为2D多边形提供了C ++中的三角剖分算法。 我尝试将其移植到3D多边形,但未成功。 如何修改此代码以使其使用3D平面多边形? 我知道我可以使用投影,但是有没有办法制作上面链接的代码的3D版本? 谢谢。 注意:以下是我的移植尝试。
double Triangulate::Area(const std::vector<int> &poly)
{
int n = poly.size();
if (n < 3) // not a plane - no area
return 0;
std::vector<double> total = {0, 0, 0};
int vi1, vi2;
std::vector<double> prod;
std::vector<double> v1, v2, v3;
double* point = NULL;
for(int i = 0; i < n; i++){
v1.clear();
v2.clear();
vi1 = poly[i];
if (i == n-1)
vi2 = poly[0];
else
vi2 = poly[i+1];
point = input.GetPoint(vi1);
v1.insert(v1.begin(), point, point+3);
point = input.GetPoint(vi2);
v2.insert(v2.begin(), point, point+3);
prod = Cross(v1, v2);
total[0] += prod[0];
total[1] += prod[1];
total[2] += prod[2];
}
v1.clear();
v2.clear();
v3.clear();
point = input.GetPoint(poly[0]);
v1.insert(v1.begin(), point, point+3);
point = input.GetPoint(poly[1]);
v2.insert(v2.begin(), point, point+3);
point = input.GetPoint(poly[2]);
v3.insert(v3.begin(), point, point+3);
double result = Dot(total, UnitNormal(v1, v2, v3));
return result/2;
}
bool Triangulate::SameSide(double P1x, double P1y, double P1z,
double P2x, double P2y, double P2z,
double Ax, double Ay, double Az,
double Bx, double By, double Bz){
double ABx, ABy, ABz, AP1x, AP1y, AP1z,
AP2x, AP2y, AP2z;
double cp1x, cp1y, cp1z, cp2x, cp2y, cp2z;
double dot;
std::vector<double> AB = {Bx - Ax, By - Ay, Bz - Az};
std::vector<double> AP1 = {P1x - Ax,P1y - Ay, P1z - Az};
std::vector<double> AP2 = {P2x - Ax, P2y - Ay, P2z - Az};
std::vector<double> cp1 = Cross(AB, AP1);
std::vector<double> cp2 = Cross(AB, AP2);
dot = Dot(cp1, cp2);
return (dot >= 0);
}
/*
InsideTriangle decides if a point P is Inside of the triangle
defined by A, B, C.
*/
bool Triangulate::InsideTriangle(double Ax, double Ay, double Az,
double Bx, double By, double Bz,
double Cx, double Cy, double Cz,
double Px, double Py, double Pz)
{
return SameSide(Px, Py, Pz, Ax, Ay, Az, Bx, By, Bz, Cx, Cy, Cz)
|| SameSide(Px, Py, Pz, Bx, By, Bz, Ax, Ay, Az, Cx, Cy, Cz)
|| SameSide(Px, Py, Pz, Cx, Cy, Cz, Ax, Ay, Az, Bx, By, Bz) ;
}
bool Triangulate::Snip(const std::vector<int> &contour,
int u,int v,int w,int n,int *V)
{
int p;
double Ax, Ay,Az, Bx, By,Bz, Cx, Cy, Cz, Px, Py, Pz;
double BAx, BAy, BAz, CAx, CAy, CAz;
Ax = input.GetPoint(V[u])[X];
Ay = input.GetPoint(V[u])[Y];
Az = input.GetPoint(V[u])[Z];
Bx = input.GetPoint(V[v])[X];
By = input.GetPoint(V[v])[Y];
Bz = input.GetPoint(V[v])[Z];
Cx = input.GetPoint(V[w])[X];
Cy = input.GetPoint(V[w])[Y];
Cz = input.GetPoint(V[w])[Z];
BAx = Bx-Ax;
BAy = By - Ay;
BAz = Bz - Az;
CAx = Cx-Ax;
CAy = Cy - Ay;
CAz = Cz - Az;
if ( EPSILON > ( (BAy*CAz-BAz*CAy)*(BAy*CAz-BAz*CAy)+
(BAx*CAz-BAz*CAx)*(BAx*CAz-BAz*CAx) +
(BAx*CAy-BAy*CAx)*(BAx*CAy-BAy*CAx)) ) return false;
for (p=0;p<n;p++)
{
if( (p == u) || (p == v) || (p == w) ) continue;
Px = input.GetPoint(V[p])[X];
Py = input.GetPoint(V[p])[Y];
Pz = input.GetPoint(V[p])[Z];
if (InsideTriangle(Ax,Ay,Az,Bx,By,Bz,Cx,Cy,Cz,Px,Py,Pz)) return false;
}
return true;
}
int Triangulate::Process(const std::vector<int> &contour,
std::vector<std::vector<int>> &result)
{
/* allocate and initialize list of Vertices in polygon */
int n = contour.size();
if ( n < 3 ) {
LOG_VAL("Cannot happen: contour is a line", "")
return 0;
}
int *V = new int[n];
/* we want a counter-clockwise polygon in V */
if ( 0.0f < Area(contour) )
for (int v=0; v<n; v++) V[v] = v;
else
for(int v=0; v<n; v++) V[v] = (n-1)-v;
int nv = n;
/* remove nv-2 Vertices, creating 1 triangle every time */
int count = 2*nv; /* error detection */
std::vector<int> tri;
int trinum = 0;
for(int m=0, v=nv-1; nv>2; )
{
/* if we loop, it is probably a non-simple polygon */
if (0 >= (count--))
{
//** Triangulate: ERROR - probable bad polygon!
LOG_VAL("Bad polygon:", trinum)
return trinum;
}
/* three consecutive vertices in current polygon, <u,v,w> */
int u = v ; if (nv <= u) u = 0; /* previous */
v = u+1; if (nv <= v) v = 0; /* new v */
int w = v+1; if (nv <= w) w = 0; /* next */
if ( Snip(contour,u,v,w,nv,V) )
{
int a,b,c,s,t;
/* true names of the vertices */
a = V[u]; b = V[v]; c = V[w];
/* output Triangle */
tri.clear();
tri.push_back( contour[a] );
tri.push_back( contour[b] );
tri.push_back( contour[c] );
result.push_back(tri);
trinum++;
m++;
/* remove v from remaining polygon */
for(s=v,t=v+1;t<nv;s++,t++) V[s] = V[t]; nv--;
/* resest error detection counter */
count = 2*nv;
}
}
delete V;
if(result.size() < 1){
LOG_VAL("Result Is Empty:", "")
exit(1);
}
return trinum;
}