OpenCV取消投影2D指向深度为Z的3D

时间:2018-07-10 18:37:24

标签: python c++ opencv projection 3d-reconstruction

问题陈述

假设我知道每个点的距离,我正在尝试将2D点重新投影到其原始3D坐标。在OpenCV documentation之后,我设法使其在零失真下工作。但是,当出现扭曲时,结果将不正确。

当前方法

因此,我们的想法是扭转以下情况:

Distorted projection

分为以下内容:

enter image description here

通过:

  1. 使用cv::undistortPoints消除任何失真
  2. 使用内在函数通过逆转上面的第二个方程来返回归一化的相机坐标
  3. 乘以z可逆归一化。

问题

  1. 为什么我需要减去f_xf_y才能返回标准化的相机坐标(在测试时凭经验找到)?在下面的代码中,在第2步中,如果我不减去-即使未失真的结果也关闭了这是我的错误-我弄乱了索引。
  2. 如果我包含失真,结果将是错误的-我在做什么错了?

示例代码(C ++)

#include <iostream>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <vector>

std::vector<cv::Point2d> Project(const std::vector<cv::Point3d>& points,
                                 const cv::Mat& intrinsic,
                                 const cv::Mat& distortion) {
  std::vector<cv::Point2d> result;
  if (!points.empty()) {
    cv::projectPoints(points, cv::Mat(3, 1, CV_64F, cvScalar(0.)),
                      cv::Mat(3, 1, CV_64F, cvScalar(0.)), intrinsic,
                      distortion, result);
  }
  return result;
}

std::vector<cv::Point3d> Unproject(const std::vector<cv::Point2d>& points,
                                   const std::vector<double>& Z,
                                   const cv::Mat& intrinsic,
                                   const cv::Mat& distortion) {
  double f_x = intrinsic.at<double>(0, 0);
  double f_y = intrinsic.at<double>(1, 1);
  double c_x = intrinsic.at<double>(0, 2);
  double c_y = intrinsic.at<double>(1, 2);
  // This was an error before:
  // double c_x = intrinsic.at<double>(0, 3);
  // double c_y = intrinsic.at<double>(1, 3);

  // Step 1. Undistort
  std::vector<cv::Point2d> points_undistorted;
  assert(Z.size() == 1 || Z.size() == points.size());
  if (!points.empty()) {
    cv::undistortPoints(points, points_undistorted, intrinsic,
                        distortion, cv::noArray(), intrinsic);
  }

  // Step 2. Reproject
  std::vector<cv::Point3d> result;
  result.reserve(points.size());
  for (size_t idx = 0; idx < points_undistorted.size(); ++idx) {
    const double z = Z.size() == 1 ? Z[0] : Z[idx];
    result.push_back(
        cv::Point3d((points_undistorted[idx].x - c_x) / f_x * z,
                    (points_undistorted[idx].y - c_y) / f_y * z, z));
  }
  return result;
}

int main() {
  const double f_x = 1000.0;
  const double f_y = 1000.0;
  const double c_x = 1000.0;
  const double c_y = 1000.0;
  const cv::Mat intrinsic =
      (cv::Mat_<double>(3, 3) << f_x, 0.0, c_x, 0.0, f_y, c_y, 0.0, 0.0, 1.0);
  const cv::Mat distortion =
      // (cv::Mat_<double>(5, 1) << 0.0, 0.0, 0.0, 0.0);  // This works!
      (cv::Mat_<double>(5, 1) << -0.32, 1.24, 0.0013, 0.0013);  // This doesn't!

  // Single point test.
  const cv::Point3d point_single(-10.0, 2.0, 12.0);
  const cv::Point2d point_single_projected = Project({point_single}, intrinsic,
                                                     distortion)[0];
  const cv::Point3d point_single_unprojected = Unproject({point_single_projected},
                                    {point_single.z}, intrinsic, distortion)[0];

  std::cout << "Expected Point: " << point_single.x;
  std::cout << " " << point_single.y;
  std::cout << " " << point_single.z << std::endl;
  std::cout << "Computed Point: " << point_single_unprojected.x;
  std::cout << " " << point_single_unprojected.y;
  std::cout << " " << point_single_unprojected.z << std::endl;
}

相同的代码(Python)

import cv2
import numpy as np

def Project(points, intrinsic, distortion):
  result = []
  rvec = tvec = np.array([0.0, 0.0, 0.0])
  if len(points) > 0:
    result, _ = cv2.projectPoints(points, rvec, tvec,
                                  intrinsic, distortion)
  return np.squeeze(result, axis=1)

def Unproject(points, Z, intrinsic, distortion):
  f_x = intrinsic[0, 0]
  f_y = intrinsic[1, 1]
  c_x = intrinsic[0, 2]
  c_y = intrinsic[1, 2]
  # This was an error before
  # c_x = intrinsic[0, 3]
  # c_y = intrinsic[1, 3]

  # Step 1. Undistort.
  points_undistorted = np.array([])
  if len(points) > 0:
    points_undistorted = cv2.undistortPoints(np.expand_dims(points, axis=1), intrinsic, distortion, P=intrinsic)
  points_undistorted = np.squeeze(points_undistorted, axis=1)

  # Step 2. Reproject.
  result = []
  for idx in range(points_undistorted.shape[0]):
    z = Z[0] if len(Z) == 1 else Z[idx]
    x = (points_undistorted[idx, 0] - c_x) / f_x * z
    y = (points_undistorted[idx, 1] - c_y) / f_y * z
    result.append([x, y, z])
  return result

f_x = 1000.
f_y = 1000.
c_x = 1000.
c_y = 1000.

intrinsic = np.array([
  [f_x, 0.0, c_x],
  [0.0, f_y, c_y],
  [0.0, 0.0, 1.0]
])

distortion = np.array([0.0, 0.0, 0.0, 0.0])  # This works!
distortion = np.array([-0.32, 1.24, 0.0013, 0.0013])  # This doesn't!

point_single = np.array([[-10.0, 2.0, 12.0],])
point_single_projected = Project(point_single, intrinsic, distortion)
Z = np.array([point[2] for point in point_single])
point_single_unprojected = Unproject(point_single_projected,
                                     Z,
                                     intrinsic, distortion)
print "Expected point:", point_single[0]
print "Computed point:", point_single_unprojected[0]

零失真(如上所述)的结果是正确的:

Expected Point: -10 2 12
Computed Point: -10 2 12

但是当包含失真时,结果为关闭:

Expected Point: -10 2 12
Computed Point: -4.26634 0.848872 12

更新1.澄清

这是一个用于图像投影的相机-我假设3D点位于相机框架坐标中。

更新2。找出第一个问题

好的,我知道f_xf_y的减法-我很愚蠢,无法弄乱索引。更新了代码以进行更正。另一个问题仍然成立。

更新3.添加了Python等效代码

要增加可见性,请添加Python代码,因为它具有相同的错误。

1 个答案:

答案 0 :(得分:2)

问题2的答案

我发现了问题所在- 3D点坐标很重要!我以为无论选择什么3D坐标点,重建都可以解决。但是,我注意到了一个奇怪的事情:使用一系列3D点时,这些点中只有一部分被正确地重建。经过进一步调查,我发现只有在摄像机视场内的图像才能被正确地重建。视野是内在参数的函数(反之亦然)。

为使以上代码正常工作,请尝试按以下方式设置参数(本机内部是我的相机提供的):

...
const double f_x = 2746.;
const double f_y = 2748.;
const double c_x = 991.;
const double c_y = 619.;
...
const cv::Point3d point_single(10.0, -2.0, 30.0);
...

此外,请不要忘记在相机坐标中y的负坐标是UP:)

问题1的答案:

有一个错误,我试图使用它来访问内部函数

...
double f_x = intrinsic.at<double>(0, 0);
double f_y = intrinsic.at<double>(1, 1);
double c_x = intrinsic.at<double>(0, 3);
double c_y = intrinsic.at<double>(1, 3);
...

但是intrinsic是一个3x3矩阵。

故事的道德感 编写单元测试!!!