给定起点(82, 186)
和周围点[(105, 186), (95, 157), (81, 159), (64, 173), (52, 188), (127, 195)]
的集合,如何确定适合这些点的最大圆圈?
注意:中心不必是起点
cX, cY = (82, 186)
points = [(105, 186), (95, 157), (81, 159), (64, 173), (52, 188), (127, 195)]
def closest_node(node, nodes):
nodes = np.asarray(nodes)
deltas = nodes - node
dist = np.linalg.norm(deltas, axis=1)
min_idx = np.argmin(dist)
return nodes[min_idx], dist[min_idx], deltas[min_idx][1]/deltas[min_idx][0] # point, distance, slope
(pX, pY), d, m = closest_node((cX, cY), points)
cv2.circle(img, (cX, cY), int(d), (255, 0, 255), 1) # circle with center C, touching point P
# learning rate
a = 0.2
# sign for direction
sX = 1 if cX - pX > 0 else -1
sY = 1 if cY - pY > 0 else -1
dx = (d * a) * np.sqrt(1 / (1 + m**2))
# New center
nX = cX + sX * dx
nY = cY + sY * m * dx
cv2.circle(img, (int(nX), int(nY)), int(d + (d * a)), [0, 0, 0], 1)
所以我试图迭代地接近第二点(然后是第三点),但我认为如果有一个矢量化方法会更好。我怎么能这样做?
编辑:使用Voronoi的解决方案
from scipy.spatial import Voronoi
points = np.array(points)
if len(points) >= 4:
vor = Voronoi(points)
max_d = 0
max_v = None
for v in vor.vertices:
cv2.circle(img, (int(v[0]), int(v[1])), 3, [200, 200, 0], 1)
_, d, _ = closest_node(v, points)
if d > max_d:
max_d = d
max_v = v
cv2.circle(img, (int(max_v[0]), int(max_v[1])), int(max_d), [0, 0, 0], 1)
答案 0 :(得分:2)
这是找到largest inscribed circle的问题(而它的中心位于点云的凸包内)。
might be solved在O(nlogn)时间内使用Voronoi图。
对于python - scipy包含Voronoi routine