根据Tube Ending Normal将旋转应用于圆柱体

时间:2016-09-23 16:24:50

标签: javascript math three.js geometry coordinates

我试图在three.js中制作弯曲的3D箭头。为了完成这项任务,我创建了一个跟随弯曲路径的Tube和一个形状为锥形的Cylinder(通过将radiusTop设置为微小)。他们目前看起来像这样:

2D

3D

我试图将箭头(圆柱形状为锥形)定位在管的末端,如下所示:( Photoshop)

arrow mockup

我在数学方面不是很强大,而且对于three.js来说还不是很新。有人可以帮我理解如何连接这两个吗?

这是我目前的代码:

        import T from 'three';

        var findY = function(r, x)
        {
           return Math.sqrt((r * r) - (x * x));
        }

        var radius = 25;
        var x = 0;
        var z = 0;
        var numberOfPoints = 10;
        var interval =  (radius/numberOfPoints);
        var points = [];

        for (var i = numberOfPoints; i >= 0; i--) 
        {
           var y = findY(radius, x);
           points.push(new T.Vector3(x, y, z))
           x = x + interval;
        }

        x = x - interval;

        for (var i = numberOfPoints - 1 ; i >= 0; i--) 
        {
           y = findY(radius, x) * -1;
           points.push(new T.Vector3(x, y, z));
           x = x - interval;
        }

        var path = new T.CatmullRomCurve3(points);

        var tubeGeometry = new T.TubeGeometry(
            path,  //path
            10,    //segments
            radius / 10,     //radius
            8,     //radiusSegments
            false  //closed
        );

        var coneGeometry = new T.CylinderGeometry(
            radiusTop = 0.1,
            radiusBottom = radius/5,
            height = 10,
            radialSegments = 10,
            heightSegments = 10,
            openEnded = 1
        );

        var material = new T.MeshBasicMaterial( { color: 0x00ff00 } );

        var tube = new T.Mesh( tubeGeometry, material );
        var cone = new T.Mesh( coneGeometry, material );

        // Translate and Rotate cone?

如果有人可以尝试以数学方式和编程方式完成

的简单解释,我将不胜感激
  • 找到位于管末端的法线
  • 将圆锥移动到正确的位置

感谢任何帮助!

1 个答案:

答案 0 :(得分:1)

当您可以直接在适当位置创建箭头时,请勿使用旋转。类似地,弯曲管也可以这样做。您唯一需要的是由A,B端点定义的最后一个线段。

A成为光盘基准中心的尖点和B。要创建箭头,您需要2个额外的基础向量,让它们调用基础光盘U,V和半径r。从它们中你可以用简单的圆形公式创建光盘点,如下所示:

arrow head

  1. 获取AB个端点

  2. 计算U,V基础向量

    U,V应位于箭头的光盘基座中,并且应相互垂直。箭头的方向(行|BA|)是光盘基础法线,因此利用交叉乘积将垂直向量返回到相乘的那个:

    W = B-A;
    W /= |W|;    // unit vector
    T = (1,0,0); // temp any non zero vector not parallel to W
    if ( |(W.T)|>0.75 ) T = (0,1,0); // if abs dot product of T and W is close to 1 it means they are close to parallel so chose different T
    U = (T x W) // U is perpendicular to T,W
    V = (U x W) // V is perpendicular to U,W
    
  3. 创建/渲染箭头几何

    这很容易展位A,B是三角扇的中心(需要2),光盘基点的计算如下:

    P(ang) = B + U.r.cos(ang) + V.r.sin(ang)
    

    所以只需循环ang整个圆圈,这样你就可以获得足够的分数(通常是36分就足够了)并且从它们那里做两个三角扇。不要忘记最后一个圆盘点必须与第一个圆盘点相同,否则你会在ang = 0360度上出现丑陋的样子或洞。

  4. 如果你仍然想要轮换,那么这是可行的。以与上面相同的方式计算U,V,W并从中构造变换矩阵。原点O将为B点,轴X,Y,Z将为U,V,W,顺序取决于您的箭头模型。 W应与模型轴匹配。 U,V可以按任何顺序排列。所以只需将所有向量复制到它们的位置并使用此矩阵进行渲染。有关详细信息,请参阅:

    <强> [注释]

    如果您不知道如何计算矢量/点积或绝对值等矢量运算,请参阅:

    // cross product: W = U x V
    W.x=(U.y*V.z)-(U.z*V.y)
    W.y=(U.z*V.x)-(U.x*V.z)
    W.z=(U.x*V.y)-(U.y*V.x)
    // dot product: a = (U.V)
    a=U.x*V.x+U.y*V.y+U.z*V.z
    // abs of vector a = |U|
    a=sqrt((U.x*U.x)+(U.y*U.y)+(U.z*U.z))
    

    [Edit1]简单GL实施

    我不在你的环境中编码,但是作为downvote和评论建议你们不能把它们放在一起你们这很奇怪,考虑到你这么做,所以这里很简单 C ++ / GL exmaple如何做到这一点(你可以将它移植到你的环境):

    overview

    void glArrowRoundxy(GLfloat x0,GLfloat y0,GLfloat z0,GLfloat r,GLfloat r0,GLfloat r1,GLfloat a0,GLfloat a1,GLfloat a2)
        {
        const int _glCircleN=50;    // points per circle
        const int n=3*_glCircleN;
        int i,j,ix,e;
        float x,y,z,x1,y1,z1,a,b,da,db=pi2/(_glCircleN-1);
        float ux,uy,uz,vx,vy,vz,u,v;
        // buffers
        GLfloat ptab[6*_glCircleN],*p0,*p1,*n0,*n1,*p;
        p0=ptab+(0*_glCircleN);     // previous tube segment circle points
        p1=ptab+(3*_glCircleN);     // actual tube segment circle points
        da=+db; if (a0>a1) da=-db;  // main angle step direction
        ux=0.0;                     // U is normal to arrow plane
        uy=0.0;
        uz=1.0;
        // arc interpolation a=<a0,a1>
        for (e=1,j=0,a=a0;e;j++,a+=da)
            {
            // end conditions
            if ((da>0.0)&&(a>=a1)) { a=a1; e=0; }
            if ((da<0.0)&&(a<=a1)) { a=a1; e=0; }
            // compute actual tube ceneter
            x1=x0+(r*cos(a));
            y1=y0+(r*sin(a));
            z1=z0;
            // V is direction from (x0,y0,z0) to (x1,y1,z1)
            vx=x1-x0;
            vy=y1-y0;
            vz=z1-z0;
            // and unit of coarse
            b=sqrt((vx*vx)+(vy*vy)+(vz*vz));
            if (b>1e-6) b=1.0/b; else b=0.0;
            vx*=b;
            vy*=b;
            vz*=b;
            // tube segment
            for (ix=0,b=0.0,i=0;i<_glCircleN;i++,b+=db)
                {
                u=r0*cos(b);
                v=r0*sin(b);
                p1[ix]=x1+(ux*u)+(vx*v); ix++;
                p1[ix]=y1+(uy*u)+(vy*v); ix++;
                p1[ix]=z1+(uz*u)+(vz*v); ix++;
                }
            if (!j)
                {
                glBegin(GL_TRIANGLE_FAN);
                glVertex3f(x1,y1,z1);
                for (ix=0;ix<n;ix+=3) glVertex3fv(p1+ix);
                glEnd();
                }
            else{
                glBegin(GL_QUAD_STRIP);
                for (ix=0;ix<n;ix+=3)
                    {
                    glVertex3fv(p0+ix);
                    glVertex3fv(p1+ix);
                    }
                glEnd();
                }
            // swap buffers
            p=p0; p0=p1; p1=p;
            p=n0; n0=n1; n1=p;
            }
        // arrowhead a=<a1,a2>
        for (ix=0,b=0.0,i=0;i<_glCircleN;i++,b+=db)
            {
            u=r1*cos(b);
            v=r1*sin(b);
            p1[ix]=x1+(ux*u)+(vx*v); ix++;
            p1[ix]=y1+(uy*u)+(vy*v); ix++;
            p1[ix]=z1+(uz*u)+(vz*v); ix++;
            }
        glBegin(GL_TRIANGLE_FAN);
        glVertex3f(x1,y1,z1);
        for (ix=0;ix<n;ix+=3) glVertex3fv(p1+ix);
        glEnd();
        x1=x0+(r*cos(a2));
        y1=y0+(r*sin(a2));
        z1=z0;
        glBegin(GL_TRIANGLE_FAN);
        glVertex3f(x1,y1,z1);
        for (ix=n-3;ix>=0;ix-=3) glVertex3fv(p1+ix);
        glEnd();
        }
    

    这会在XY平面中渲染弯曲箭头,其中心为x,y,z,大半径为rr0是管半径,r1是箭头基半径。由于我没有您的曲线定义,我选择XY平面中的圆。 a0,a1,a2是箭头开始(a0),箭头开始(a1)和结束(a2)的角度。 pi2只是常量pi2=6.283185307179586476925286766559

    我们的想法是记住实际和之前的管段圆点,以便ptab,p0,p1,否则你需要计算两次。

    当我直接选择XY平面时,我知道一个基本向量是正常的。第二个与它垂直并且与箭头方向垂直方向幸运地,圆形属性本身提供了这一点,因此在这种情况下不需要交叉产品。

    希望如果不评论我就足够清楚了。

    <强> [EDIT2]

    我需要将它添加到我的引擎中,所以这里是3D版本(不仅限于轴对齐的箭头,而且锥体也是弯曲的)。它除了基矢量计算之外是一样的,我也改变了标题<a0,a1>中的一点是整个区间的角度,而aa是箭头大小,但后者在代码中被转换为原始约定。我还添加了法线照明计算。我还添加了线性箭头,其中基础向量的计算在没有曲线的情况下不利用圆属性。结果如下:

    //---------------------------------------------------------------------------
    const int _glCircleN=50;    // points per circle
    //---------------------------------------------------------------------------
    void glCircleArrowxy(GLfloat x0,GLfloat y0,GLfloat z0,GLfloat r,GLfloat r0,GLfloat r1,GLfloat a0,GLfloat a1,GLfloat aa)
        {
        double pos[3]={ x0, y0, z0};
        double nor[3]={0.0,0.0,1.0};
        double bin[3]={1.0,0.0,0.0};
        glCircleArrow3D(pos,nor,bin,r,r0,r1,a0,a1,aa);
        }
    //---------------------------------------------------------------------------
    void glCircleArrowyz(GLfloat x0,GLfloat y0,GLfloat z0,GLfloat r,GLfloat r0,GLfloat r1,GLfloat a0,GLfloat a1,GLfloat aa)
        {
        double pos[3]={ x0, y0, z0};
        double nor[3]={1.0,0.0,0.0};
        double bin[3]={0.0,1.0,0.0};
        glCircleArrow3D(pos,nor,bin,r,r0,r1,a0,a1,aa);
        }
    //---------------------------------------------------------------------------
    void glCircleArrowxz(GLfloat x0,GLfloat y0,GLfloat z0,GLfloat r,GLfloat r0,GLfloat r1,GLfloat a0,GLfloat a1,GLfloat aa)
        {
        double pos[3]={ x0, y0, z0};
        double nor[3]={0.0,1.0,0.0};
        double bin[3]={0.0,0.0,1.0};
        glCircleArrow3D(pos,nor,bin,r,r0,r1,a0,a1,aa);
        }
    //---------------------------------------------------------------------------
    void glCircleArrow3D(double *pos,double *nor,double *bin,double r,double r0,double r1,double a0,double a1,double aa)
        {
    //  const int _glCircleN=20;    // points per circle
        int e,i,j,N=3*_glCircleN;
        double U[3],V[3],u,v;
        double a,b,da,db=pi2/double(_glCircleN-1),a2,rr;
        double *ptab,*p0,*p1,*n0,*n1,*pp,p[3],q[3],c[3],n[3],tan[3];
        // buffers
        ptab=new double [12*_glCircleN]; if (ptab==NULL) return;
        p0=ptab+(0*_glCircleN);
        n0=ptab+(3*_glCircleN);
        p1=ptab+(6*_glCircleN);
        n1=ptab+(9*_glCircleN);
        // prepare angles
        a2=a1; da=db; aa=fabs(aa);
        if (a0>a1) { da=-da; aa=-aa; }
        a1-=aa;
        // compute missing basis vectors
        vector_copy(U,nor);         // U is normal to arrow plane
        vector_mul(tan,nor,bin);    // tangent is perpendicular to normal and binormal
        // arc interpolation a=<a0,a2>
        for (e=0,j=0,a=a0;e<5;j++,a+=da)
            {
            // end conditions
            if (e==0)   // e=0
                {
                if ((da>0.0)&&(a>=a1)) { a=a1; e++; }
                if ((da<0.0)&&(a<=a1)) { a=a1; e++; }
                rr=r0;
                }
            else{       // e=1,2,3,4
                if ((da>0.0)&&(a>=a2)) { a=a2; e++; }
                if ((da<0.0)&&(a<=a2)) { a=a2; e++; }
                rr=r1*fabs(divide(a-a2,a2-a1));
                }
            // compute actual tube segment center c[3]
            u=r*cos(a);
            v=r*sin(a);
            vector_mul(p,bin,u);
            vector_mul(q,tan,v);
            vector_add(c,p,  q);
            vector_add(c,c,pos);
            // V is unit direction from arrow center to tube segment center
            vector_sub(V,c,pos);
            vector_one(V,V);
            // tube segment interpolation
            for (b=0.0,i=0;i<N;i+=3,b+=db)
                {
                u=cos(b);
                v=sin(b);
                vector_mul(p,U,u);      // normal
                vector_mul(q,V,v);
                vector_add(n1+i,p,q);
                vector_mul(p,n1+i,rr);  // vertex
                vector_add(p1+i,p,c);
                }
            if (e>1)                    // recompute normals for cone
                {
                for (i=3;i<N;i+=3)
                    {
                    vector_sub(p,p0+i  ,p1+i);
                    vector_sub(q,p1+i-3,p1+i);
                    vector_mul(p,p,q);
                    vector_one(n1+i,p);
                    }
                vector_sub(p,p0    ,p1);
                vector_sub(q,p1+N-3,p1);
                vector_mul(p,q,p);
                vector_one(n1,p);
                if (da>0.0) for (i=0;i<N;i+=3) vector_neg(n1+i,n1+i);
                if (e==  3) for (i=0;i<N;i+=3) vector_copy(n0+i,n1+i);
                }
            // render base disc
            if (!j)
                {
                vector_mul(n,U,V);
                glBegin(GL_TRIANGLE_FAN);
                glNormal3dv(n);
                glVertex3dv(c);
                if (da<0.0) for (i=N-3;i>=0;i-=3) glVertex3dv(p1+i);
                else        for (i=  0;i< N;i+=3) glVertex3dv(p1+i);
                glEnd();
                }
            // render tube
            else{
                glBegin(GL_QUAD_STRIP);
                if (da<0.0) for (i=0;i<N;i+=3)
                    {
                    glNormal3dv(n1+i); glVertex3dv(p1+i);
                    glNormal3dv(n0+i); glVertex3dv(p0+i);
                    }
                else for (i=0;i<N;i+=3)
                    {
                    glNormal3dv(n0+i); glVertex3dv(p0+i);
                    glNormal3dv(n1+i); glVertex3dv(p1+i);
                    }
                glEnd();
                }
            // swap buffers
            pp=p0; p0=p1; p1=pp;
            pp=n0; n0=n1; n1=pp;
            // handle r0 -> r1 edge
            if (e==1) a-=da;
            if ((e==1)||(e==2)||(e==3)) e++;
            }
        // release buffers
        delete[] ptab;
        }
    //---------------------------------------------------------------------------
    void glLinearArrow3D(double *pos,double *dir,double r0,double r1,double l,double al)
        {
    //  const int _glCircleN=20;    // points per circle
        int e,i,N=3*_glCircleN;
        double U[3],V[3],W[3],u,v;
        double a,da=pi2/double(_glCircleN-1),r,t;
        double *ptab,*p0,*p1,*n1,*pp,p[3],q[3],c[3],n[3];
        // buffers
        ptab=new double [9*_glCircleN]; if (ptab==NULL) return;
        p0=ptab+(0*_glCircleN);
        p1=ptab+(3*_glCircleN);
        n1=ptab+(6*_glCircleN);
        // compute basis vectors
        vector_one(W,dir);
        vector_ld(p,1.0,0.0,0.0);
        vector_ld(q,0.0,1.0,0.0);
        vector_ld(n,0.0,0.0,1.0);
        a=fabs(vector_mul(W,p));            pp=p; t=a;
        a=fabs(vector_mul(W,q)); if (t>a) { pp=q; t=a; }
        a=fabs(vector_mul(W,n)); if (t>a) { pp=n; t=a; }
        vector_mul(U,W,pp);
        vector_mul(V,U,W);
        vector_mul(U,V,W);
        for (e=0;e<4;e++)
            {
            // segment center
            if (e==0) { t=0.0;  r= r0; }
            if (e==1) { t=l-al; r= r0; }
            if (e==2) { t=l-al; r= r1; }
            if (e==3) { t=l;    r=0.0; }
            vector_mul(c,W,t);
            vector_add(c,c,pos);
            // tube segment interpolation
            for (a=0.0,i=0;i<N;i+=3,a+=da)
                {
                u=cos(a);
                v=sin(a);
                vector_mul(p,U,u);      // normal
                vector_mul(q,V,v);
                vector_add(n1+i,p,q);
                vector_mul(p,n1+i,r);   // vertex
                vector_add(p1+i,p,c);
                }
            if (e>2)                    // recompute normals for cone
                {
                for (i=3;i<N;i+=3)
                    {
                    vector_sub(p,p0+i  ,p1+i);
                    vector_sub(q,p1+i-3,p1+i);
                    vector_mul(p,p,q);
                    vector_one(n1+i,p);
                    }
                vector_sub(p,p0    ,p1);
                vector_sub(q,p1+N-3,p1);
                vector_mul(p,q,p);
                vector_one(n1,p);
                }
            // render base disc
            if (!e)
                {
                vector_neg(n,W);
                glBegin(GL_TRIANGLE_FAN);
                glNormal3dv(n);
                glVertex3dv(c);
                for (i=0;i<N;i+=3) glVertex3dv(p1+i);
                glEnd();
                }
            // render tube
            else{
                glBegin(GL_QUAD_STRIP);
                for (i=0;i<N;i+=3)
                    {
                    glNormal3dv(n1+i);
                    glVertex3dv(p0+i);
                    glVertex3dv(p1+i);
                    }
                glEnd();
                }
            // swap buffers
            pp=p0; p0=p1; p1=pp;
            }
        // release buffers
        delete[] ptab;
        }
    //---------------------------------------------------------------------------
    

    用法:

    glColor3f(0.5,0.5,0.5);
    
    glCircleArrowyz(+3.5,0.0,0.0,0.5,0.1,0.2,0.0*deg,+270.0*deg,45.0*deg);
    
    glCircleArrowyz(-3.5,0.0,0.0,0.5,0.1,0.2,0.0*deg,-270.0*deg,45.0*deg);
    glCircleArrowxz(0.0,+3.5,0.0,0.5,0.1,0.2,0.0*deg,+270.0*deg,45.0*deg);
    glCircleArrowxz(0.0,-3.5,0.0,0.5,0.1,0.2,0.0*deg,-270.0*deg,45.0*deg);
    glCircleArrowxy(0.0,0.0,+3.5,0.5,0.1,0.2,0.0*deg,+270.0*deg,45.0*deg);
    glCircleArrowxy(0.0,0.0,-3.5,0.5,0.1,0.2,0.0*deg,-270.0*deg,45.0*deg);
    glColor3f(0.2,0.2,0.2);
    glLinearArrow3D(vector_ld(+2.0,0.0,0.0),vector_ld(+1.0,0.0,0.0),0.1,0.2,2.0,0.5);
    glLinearArrow3D(vector_ld(-2.0,0.0,0.0),vector_ld(-1.0,0.0,0.0),0.1,0.2,2.0,0.5);
    glLinearArrow3D(vector_ld(0.0,+2.0,0.0),vector_ld(0.0,+1.0,0.0),0.1,0.2,2.0,0.5);
    glLinearArrow3D(vector_ld(0.0,-2.0,0.0),vector_ld(0.0,-1.0,0.0),0.1,0.2,2.0,0.5);
    glLinearArrow3D(vector_ld(0.0,0.0,+2.0),vector_ld(0.0,0.0,+1.0),0.1,0.2,2.0,0.5);
    glLinearArrow3D(vector_ld(0.0,0.0,-2.0),vector_ld(0.0,0.0,-1.0),0.1,0.2,2.0,0.5);
    

    和arows的概述(在图像的右侧):

    arrows

    我正在使用我的矢量库,所以这里有一些解释:


    vector_mul(a[3],b[3],c[3])是交叉产品a = b x c
    vector_mul(a[3],b[3],c)是标量a = b.c的简单乘法
    a = vector_mul(b[3],c[3])是点积a = (b.c)
    vector_one(a[3],b[3])是单位向量a = b/|b|
    vector_copy(a[3],b[3])只是复制a = b
    vector_add(a[3],b[3],c[3])正在添加a = b + c
    vector_sub(a[3],b[3],c[3])正在减去a = b - c
    vector_neg(a[3],b[3])是否定a = -b
    vector_ld(a[3],x,y,z)正在加载a = (x,y,z)

    pos是圆圈箭头的中心位置,nor是箭头所在平面的法线。 bin是双法线,角度从此轴开始。应该垂直于norr,r0,r1是箭头的半径(弯曲,管状,锥形)

    线性箭头类似于dir是箭头的方向,l是箭头大小,al是箭头大小。