线性时间图算法

时间:2016-04-12 01:20:49

标签: algorithm graph shortest-path breadth-first-search depth-first-search

给定无向图G =(V,E),是否存在计算两个任意顶点u&之间的最短路径总数的算法。 v?我想我们可以利用Dijkstra的算法。

1 个答案:

答案 0 :(得分:0)

是的,你可以使用dijkstra。创建一个数组,用于存储任何节点的最短路径总数。总称它。所有数组成员的初始值为0,但总[s] = 1,其中s是源。

在dijkstra循环中,当比较节点的最小路径时,如果比较结果较小,则用当前节点的总数更新该节点的总数组。如果等于,则添加该节点的总数组,其中包含当前节点的总数。

从维基百科中获取的伪代码进行了一些修改:

function Dijkstra(Graph, source):

  create vertex set Q

  for each vertex v in Graph:             // Initialization
      dist[v] ← INFINITY                  // Unknown distance from source to v
      total[v] ← 0                        // total number of shortest path
      add v to Q                          // All nodes initially in Q (unvisited nodes)

  dist[source] ← 0                        // Distance from source to source
  total[source] ← 1                       // total number of shortest path of source is set to 1

  while Q is not empty:
      u ← vertex in Q with min dist[u]    // Source node will be selected first
      remove u from Q 

      for each neighbor v of u:           // where v is still in Q.
          alt ← dist[u] + length(u, v)
          if alt < dist[v]:               // A shorter path to v has been found
              dist[v] ← alt 
              total[v] ← total[u]         // update the total array of that node with the number of total array of current node
          elseif alt = dist[v]
              total[v] ← total[v] + total[u] // add the total array of that node with the number of total array of current node

  return dist[], total[]