这是我用于Kruskal算法的伪代码。我在这里使用的数据结构是一个邻接矩阵。我得到了n^2
的增长顺序。我想知道它是否正确。
Kruskal’s Pseudo code
1. Kruskal (n, m, E)
2. // Purpose to compute the minimum spanning tree using Kruskal's algorithm
3. // Inputs
4. n - Number of vertices in the graph
5. m - Number of edges in the graph
6. E - Edge list consisting of set of edges along with equivalent weight
w - cost adjacency matrix with values >0
7. con – constrain adjacency matrix
8. // Output: - the minimum spanning tree along
9. count - shortest distance from the source to all other nodes
d - shortest distance from source to all other nodes
10. p - shortest path from source to destination
11. s - gives the nodes that are so far visited and nodes that are not visited
12. s [source] <- 1
13. For i = 0 to n-1 Do
14. If con[u, i] == T Then
15. add u to S
16. select edge that need to be connected
17. add cost associated with edge to get total cost of minimal spanning tree
18. Else
19. find u and d[u] such that d[u] is minimum and u Є V - S
20. add u to S
21. End If
22. If u = destination Then
23. End
24. End If
25. For every v Є V - S Do
26. If con[u, v] == T Then
27. d[v] <- d[u] + w[u, v]
28. p[v] <- u
29. ElseIf d[u] + w[u, v]<d[v] Then
30. d[v] <- d[u] + w[u, v]
31. p[v] <- u
32. End If
33. End For
34. End For
答案 0 :(得分:3)
根据您的实际实施和所涉及的数据结构,此算法的时间复杂度可能很差。这就是为什么邻接列表是Kruskal算法的更合适的结构:您需要能够尽快识别两件事:
找到下一分钟。重量边缘,
检查边是否连接两个不同的树(或者两个顶点是否属于同一个组件)。
要实现O(N log N)复杂度,这意味着您需要:
首先按重量对边缘进行排序。这将使您在寻找下一个最小权重边缘的步骤为O(1)操作,并且
使用像 union-find 这样的结构来快速识别哪些顶点在哪些组件中。
作为参考,您可以查看this CodeProject article(C#实现)。