Java中的半精度浮点

时间:2011-05-28 15:41:10

标签: java floating-point ieee-754 precision

在任何地方都有Java库可以对IEEE 754 half-precision数字进行计算或将它们转换为双精度数据吗?

这两种方法都适用:

  • 将数字保持为半精度格式,并使用整数算术计算bit-twiddling(MicroFloat用于单精度和双精度)
  • 以单精度或双精度执行所有计算,转换为半精度进行传输(在这种情况下,我需要的是经过良好测试的转换函数。)

修改:转换需要100%准确 - 输入文件中存在大量NaN,无穷大和次正规。


相关问题但适用于JavaScript:Decompressing Half Precision Floats in Javascript

5 个答案:

答案 0 :(得分:51)

您可以使用Float.intBitsToFloat()Float.floatToIntBits()将它们与原始浮点值进行转换。如果您可以使用截断精度(而不是舍入),则只需几位移位即可实现转换。

我现在已经付出了更多的努力,结果并不像我在开始时预期的那么简单。这个版本现在在我能想象的每个方面进行测试和验证,我非常有信心它可以为所有可能的输入值生成精确的结果。它支持任意方向的精确舍入和次正规转换。

// ignores the higher 16 bits
public static float toFloat( int hbits )
{
    int mant = hbits & 0x03ff;            // 10 bits mantissa
    int exp =  hbits & 0x7c00;            // 5 bits exponent
    if( exp == 0x7c00 )                   // NaN/Inf
        exp = 0x3fc00;                    // -> NaN/Inf
    else if( exp != 0 )                   // normalized value
    {
        exp += 0x1c000;                   // exp - 15 + 127
        if( mant == 0 && exp > 0x1c400 )  // smooth transition
            return Float.intBitsToFloat( ( hbits & 0x8000 ) << 16
                                            | exp << 13 | 0x3ff );
    }
    else if( mant != 0 )                  // && exp==0 -> subnormal
    {
        exp = 0x1c400;                    // make it normal
        do {
            mant <<= 1;                   // mantissa * 2
            exp -= 0x400;                 // decrease exp by 1
        } while( ( mant & 0x400 ) == 0 ); // while not normal
        mant &= 0x3ff;                    // discard subnormal bit
    }                                     // else +/-0 -> +/-0
    return Float.intBitsToFloat(          // combine all parts
        ( hbits & 0x8000 ) << 16          // sign  << ( 31 - 15 )
        | ( exp | mant ) << 13 );         // value << ( 23 - 10 )
}

// returns all higher 16 bits as 0 for all results
public static int fromFloat( float fval )
{
    int fbits = Float.floatToIntBits( fval );
    int sign = fbits >>> 16 & 0x8000;          // sign only
    int val = ( fbits & 0x7fffffff ) + 0x1000; // rounded value

    if( val >= 0x47800000 )               // might be or become NaN/Inf
    {                                     // avoid Inf due to rounding
        if( ( fbits & 0x7fffffff ) >= 0x47800000 )
        {                                 // is or must become NaN/Inf
            if( val < 0x7f800000 )        // was value but too large
                return sign | 0x7c00;     // make it +/-Inf
            return sign | 0x7c00 |        // remains +/-Inf or NaN
                ( fbits & 0x007fffff ) >>> 13; // keep NaN (and Inf) bits
        }
        return sign | 0x7bff;             // unrounded not quite Inf
    }
    if( val >= 0x38800000 )               // remains normalized value
        return sign | val - 0x38000000 >>> 13; // exp - 127 + 15
    if( val < 0x33000000 )                // too small for subnormal
        return sign;                      // becomes +/-0
    val = ( fbits & 0x7fffffff ) >>> 23;  // tmp exp for subnormal calc
    return sign | ( ( fbits & 0x7fffff | 0x800000 ) // add subnormal bit
         + ( 0x800000 >>> val - 102 )     // round depending on cut off
      >>> 126 - val );   // div by 2^(1-(exp-127+15)) and >> 13 | exp=0
}

book 相比,我实现了两个小扩展,因为16位浮点数的一般精度相当低,这可能使浮点格式的固有异常在视觉上可感知,而较大的浮点类型由于精确度很高,通常不会被注意到。

第一个是toFloat()函数中的这两行:

if( mant == 0 && exp > 0x1c400 )  // smooth transition
    return Float.intBitsToFloat( ( hbits & 0x8000 ) << 16 | exp << 13 | 0x3ff );

在类型大小的正常范围内的浮点数采用指数,因此精度为值的大小。但这并非顺利采用,而是按步骤进行:切换到下一个更高的指数会导致精度降低一半。对于尾数的所有值,精度现在保持不变,直到下一个跳到下一个更高的指数。上面的扩展代码通过返回该特定半浮点值的覆盖32位浮点范围的地理中心中的值,使这些转换更平滑。每个正常的半浮点值都精确映射到8192个32位浮点值。返回的值应该恰好位于这些值的中间。但是在半浮点指数的转换处,较低的4096值具有两倍于上4096值的精度,因此覆盖的数字空间仅为另一侧的一半。所有这些8192 32位浮点值映射到相同的半浮点值,因此将半浮点数转换为32位并返回导致相同的半浮点值,无论8192 中间 32位值中的哪一个是选择。现在,扩展现在会在转换时产生类似于sqrt(2)因子的更平滑的半步,如下面的右图片所示,而左图片应该是在没有抗锯齿的情况下将锐利步骤可视化为两倍。您可以安全地从代码中删除这两行以获得标准行为。

covered number space on either side of the returned value:
       6.0E-8             #######                  ##########
       4.5E-8             |                       #
       3.0E-8     #########               ########

第二个扩展名在fromFloat()函数中:

    {                                     // avoid Inf due to rounding
        if( ( fbits & 0x7fffffff ) >= 0x47800000 )
...
        return sign | 0x7bff;             // unrounded not quite Inf
    }

此扩展稍微扩展了半浮点格式的数字范围,方法是将某些32位值保存为无限升级。受影响的值是那些在没有舍入的情况下小于无穷大的值,并且由于舍入而仅变为无穷大。如果您不想要此扩展名,可以安全地删除上面显示的行。

我尝试尽可能地优化fromFloat()函数中正常值的路径,这使得它由于使用预先计算和未移位的常量而使其可读性稍差。我没有在'toFloat()'中投入太多精力,因为它无论如何都不会超过查找表的性能。因此,如果速度真的很重要,可以使用toFloat()函数仅填充具有0x10000元素的静态查找表,而不是使用此表进行实际转换。使用当前的x64服务器虚拟机大约快3倍,使用x86客户端虚拟机大约快5倍。

我将此代码置于公共领域。

答案 1 :(得分:1)

x4u的代码将值1正确编码为0x3c00(ref:https://en.wikipedia.org/wiki/Half-precision_floating-point_format)。但是具有平滑度改进的解码器将其解码为1.000122。维基百科条目表示可以精确表示整数值0..2048。不太好......从forFloat代码中删除"| 0x3ff"可确保toFloat(fromFloat(k)) == k表示-2048..2048范围内的整数k,可能代价不太平滑。< / p>

答案 2 :(得分:0)

在我看到这里发布的解决方案之前,我已经掀起了一些简单的事情:

public static float toFloat(int nHalf)
    {
    int S = (nHalf >>> 15) & 0x1;                                                             
    int E = (nHalf >>> 10) & 0x1F;                                                            
    int T = (nHalf       ) & 0x3FF;                                                           

    E = E == 0x1F                                                                            
            ? 0xFF  // it's 2^w-1; it's all 1's, so keep it all 1's for the 32-bit float       
            : E - 15 + 127;     // adjust the exponent from the 16-bit bias to the 32-bit bias

    // sign S is now bit 31                                                                    
    // exp E is from bit 30 to bit 23                                                          
    // scale T by 13 binary digits (it grew from 10 to 23 bits)                                
    return Float.intBitsToFloat(S << 31 | E << 23 | T << 13);                               
    }

我确实喜欢其他发布解决方案中的方法。供参考:

    // notes from the IEEE-754 specification:

    // left to right bits of a binary floating point number:
    // size        bit ids       name  description
    // ----------  ------------  ----  ---------------------------
    // 1 bit                       S   sign
    // w bits      E[0]..E[w-1]    E   biased exponent
    // t=p-1 bits  d[1]..d[p-1]    T   trailing significant field

    // The range of the encoding’s biased exponent E shall include:
    // ― every integer between 1 and 2^w − 2, inclusive, to encode normal numbers
    // ― the reserved value 0 to encode ±0 and subnormal numbers
    // ― the reserved value 2w − 1 to encode +/-infinity and NaN

    // The representation r of the floating-point datum, and value v of the floating-point datum
    // represented, are inferred from the constituent fields as follows:
    // a) If E == 2^w−1 and T != 0, then r is qNaN or sNaN and v is NaN regardless of S
    // b) If E == 2^w−1 and T == 0, then r=v=(−1)^S * (+infinity)
    // c) If 1 <= E <= 2^w−2, then r is (S, (E−bias), (1 + 2^(1−p) * T))
    //    the value of the corresponding floating-point number is
    //        v = (−1)^S * 2^(E−bias) * (1 + 2^(1−p) * T)
    //    thus normal numbers have an implicit leading significand bit of 1
    // d) If E == 0 and T != 0, then r is (S, emin, (0 + 2^(1−p) * T))
    //    the value of the corresponding floating-point number is
    //        v = (−1)^S * 2^emin * (0 + 2^(1−p) * T)
    //    thus subnormal numbers have an implicit leading significand bit of 0
    // e) If E == 0 and T ==0, then r is (S, emin, 0) and v = (−1)^S * (+0)

    // parameter                                      bin16  bin32
    // --------------------------------------------   -----  -----
    // k, storage width in bits                         16     32
    // p, precision in bits                             11     24
    // emax, maxiumum exponent e                        15    127
    // bias, E-e                                        15    127
    // sign bit                                          1      1
    // w, exponent field width in bits                   5      8
    // t, trailing significant field width in bits      10     23

答案 3 :(得分:0)

我创建了一个名为 HalfPrecisionFloat 的java类,它使用x4u的解决方案。该类具有便捷方法和错误检查。它更进一步,有从2字节半精度值返回Double和Float的方法。

希望这会对某人有所帮助。

==&GT;

import java.nio.ByteBuffer;

/**
 * Accepts various forms of a floating point half-precision (2 byte) number 
 * and contains methods to convert to a
 * full-precision floating point number Float and Double instance.
 * <p>
 * This implemention was inspired by x4u who is a user contributing 
 * to stackoverflow.com.
 * (https://stackoverflow.com/users/237321/x4u).
 *
 * @author dougestep
 */
public class HalfPrecisionFloat {
    private short halfPrecision;
    private Float fullPrecision;

    /**
     * Creates an instance of the class from the supplied the supplied 
     * byte array.  The byte array must be exactly two bytes in length.
     *
     * @param bytes the two-byte byte array.
     */
    public HalfPrecisionFloat(byte[] bytes) {
        if (bytes.length != 2) {
            throw new IllegalArgumentException("The supplied byte array " +
              "must be exactly two bytes in length");
        }

        final ByteBuffer buffer = ByteBuffer.wrap(bytes);
        this.halfPrecision = buffer.getShort();
    }

    /**
     * Creates an instance of this class from the supplied short number.
     *
     * @param number the number defined as a short.
     */
    public HalfPrecisionFloat(final short number) {
        this.halfPrecision = number;
        this.fullPrecision = toFullPrecision();
    }

    /**
     * Creates an instance of this class from the supplied 
     * full-precision floating point number.
     *
     * @param number the float number.
     */
    public HalfPrecisionFloat(final float number) {
        if (number > Short.MAX_VALUE) {
            throw new IllegalArgumentException("The supplied float is too "
              + "large for a two byte representation");
        }
        if (number < Short.MIN_VALUE) {
            throw new IllegalArgumentException("The supplied float is too "
              + "small for a two byte representation");
        }

        final int val = fromFullPrecision(number);
        this.halfPrecision = (short) val;
        this.fullPrecision = number;
    }

    /**
     * Returns the half-precision float as a number defined as a short.
     *
     * @return the short.
     */
    public short getHalfPrecisionAsShort() {
        return halfPrecision;
    }

    /**
     * Returns a full-precision floating pointing number from the 
     * half-precision value assigned on this instance.
     *
     * @return the full-precision floating pointing number.
     */
    public float getFullFloat() {
        if (fullPrecision == null) {
            fullPrecision = toFullPrecision();
        }
        return fullPrecision;
    }

    /**
     * Returns a full-precision double floating point number from the 
     * half-precision value assigned on this instance.
     *
     * @return the full-precision double floating pointing number.
     */
    public double getFullDouble() {
        return new Double(getFullFloat());
    }

    /**
     * Returns the full-precision float number from the half-precision 
     * value assigned on this instance.
     *
     * @return the full-precision floating pointing number.
     */
    private float toFullPrecision() {
        int mantisa = halfPrecision & 0x03ff;
        int exponent = halfPrecision & 0x7c00;

        if (exponent == 0x7c00) {
            exponent = 0x3fc00;
        } else if (exponent != 0) {
            exponent += 0x1c000;
            if (mantisa == 0 && exponent > 0x1c400) {
                return Float.intBitsToFloat(
                  (halfPrecision & 0x8000) << 16 | exponent << 13 | 0x3ff);
            }
        } else if (mantisa != 0) {
            exponent = 0x1c400;
            do {
                mantisa <<= 1;
                exponent -= 0x400;
            } while ((mantisa & 0x400) == 0);
            mantisa &= 0x3ff;
        }

        return Float.intBitsToFloat(
         (halfPrecision & 0x8000) << 16 | (exponent | mantisa) << 13);
    }

    /**
     * Returns the integer representation of the supplied 
     * full-precision floating pointing number.
     *
     * @param number the full-precision floating pointing number.
     * @return the integer representation.
     */
    private int fromFullPrecision(final float number) {
        int fbits = Float.floatToIntBits(number);
        int sign = fbits >>> 16 & 0x8000;

        int val = (fbits & 0x7fffffff) + 0x1000;

        if (val >= 0x47800000) {
            if ((fbits & 0x7fffffff) >= 0x47800000) {
                if (val < 0x7f800000) {
                    return sign | 0x7c00;
                }
                return sign | 0x7c00 | (fbits & 0x007fffff) >>> 13;
            }
            return sign | 0x7bff;
        }
        if (val >= 0x38800000) {
            return sign | val - 0x38000000 >>> 13;
        }
        if (val < 0x33000000) {
            return sign;
        }
        val = (fbits & 0x7fffffff) >>> 23;
        return sign | ((fbits & 0x7fffff | 0x800000) 
         + (0x800000 >>> val - 102) >>> 126 - val);
    }

这是单元测试

import org.junit.Assert;
import org.junit.Test;

import java.nio.ByteBuffer;

public class TestHalfPrecision {

  private byte[] simulateBytes(final float fullPrecision) {
    HalfPrecisionFloat halfFloat = new HalfPrecisionFloat(fullPrecision);
    short halfShort = halfFloat.getHalfPrecisionAsShort();

    ByteBuffer buffer = ByteBuffer.allocate(2);
    buffer.putShort(halfShort);
    return buffer.array();
  }

  @Test
  public void testHalfPrecisionToFloatApproach() {
    final float startingValue = 1.2f;
    final float closestValue = 1.2001953f;
    final short shortRepresentation = (short) 15565;

    byte[] bytes = simulateBytes(startingValue);
    HalfPrecisionFloat halfFloat = new HalfPrecisionFloat(bytes);
    final float retFloat = halfFloat.getFullFloat();
    Assert.assertEquals(new Float(closestValue), new Float(retFloat));

    HalfPrecisionFloat otherWay = new HalfPrecisionFloat(retFloat);
    final short shrtValue = otherWay.getHalfPrecisionAsShort();
    Assert.assertEquals(new Short(shortRepresentation), new Short(shrtValue));

    HalfPrecisionFloat backAgain = new HalfPrecisionFloat(shrtValue);
    final float backFlt = backAgain.getFullFloat();
    Assert.assertEquals(new Float(closestValue), new Float(backFlt));

    HalfPrecisionFloat dbl = new HalfPrecisionFloat(startingValue);
    final double retDbl = dbl.getFullDouble();
    Assert.assertEquals(new Double(startingValue), new Double(retDbl));
  }

  @Test(expected = IllegalArgumentException.class)
  public void testInvalidByteArray() {
    ByteBuffer buffer = ByteBuffer.allocate(4);
    buffer.putFloat(Float.MAX_VALUE);
    byte[] bytes = buffer.array();

    new HalfPrecisionFloat(bytes);
  }

  @Test(expected = IllegalArgumentException.class)
  public void testInvalidMaxFloat() {
    new HalfPrecisionFloat(Float.MAX_VALUE);
  }

  @Test(expected = IllegalArgumentException.class)
  public void testInvalidMinFloat() {
    new HalfPrecisionFloat(-35000);
  }

  @Test
  public void testCreateWithShort() {
    HalfPrecisionFloat sut = new HalfPrecisionFloat(Short.MAX_VALUE);
    Assert.assertEquals(Short.MAX_VALUE, sut.getHalfPrecisionAsShort());
  }
}

答案 4 :(得分:0)

我对小的正浮点数感兴趣,因此我构建了具有 12位尾数,无符号位和4位指数(偏差为15)的变体,这样它可以表示介于0和1.00(不包括)完全可以。在尾数上有2位分辨率,但指数较低。

Text

测试给出:

public static float toFloat(int hbits) {
    int mant = hbits & 0x0fff;            // 12 bits mantissa
    int exp =  (hbits & 0xf000) >>> 12;   // 4 bits exponent
    if (exp == 0xf) {
        exp = 0xff;
    } else {
        if (exp != 0) { // normal value
            exp += 127 - 15;
        } else { // subnormal value
            if (mant != 0) { // not zero
                exp += 127 - 15;
                // make it noral
                exp++;
                do {
                    mant <<= 1;
                    exp--;
                } while ((mant & 0x1000) == 0);
                mant &= 0x0fff;
            }
        }
    }
    return Float.intBitsToFloat(exp << 23 | mant << 11);
}

public static int fromFloat(float fval) {
    int fbits = Float.floatToIntBits( fval );
    int val = ( fbits & 0x7fffffff ) + 0x400; // rounded value
    if( val < 0x32000000 )                // too small for subnormal or negative
        return 0;                         // becomes 0

    if( val >= 0x47800000 )               // might be or become NaN/Inf
    {                                     // avoid Inf due to rounding
        if( ( fbits & 0x7fffffff ) >= 0x47800000 )
        {                                 // is or must become NaN/Inf
            if( val < 0x7f800000 )        // was value but too large
                return 0xf000;            // make it +/-Inf
            return 0xf000 |               // remains +/-Inf or NaN
                ( fbits & 0x007fffff ) >>> 11; // keep NaN (and Inf) bits
        }
        return 0x7fff;                    // unrounded not quite Inf
    }
    if( val >= 0x38800000 )               // remains normalized value
        return val - 0x38000000 >>> 11;   // exp - 127 + 15

    val = ( fbits & 0x7fffffff ) >>> 23;  // tmp exp for subnormal calc
    return ( ( fbits & 0x7f_ffff | 0x80_0000 ) // add subnormal bit
            + ( 0x800000 >>> val - 100 )     // round depending on cut off
            >>> 124 - val );   // div by 2^(1-(exp-127+15)) and >> 11 | exp=0
}

法线:

Smallest subnormal float      : 0.0000000149
Largest  subnormal float      : 0.0000610203
Smallest    normal float      : 0.0000610352
Smallest    normal float + ups: 0.0000610501
E=1, M=fff (max)              : 0.0001220554
Largest     normal float      : 0.0078115463

对于次正规检验:

0.9990000129  => 3f7fbe77 => eff8  => 0.9990234375  | error: 0.002%
0.8991000056  => 3f662b6b => ecc5  => 0.8990478516  | error: 0.006%
0.8091899753  => 3f4f2713 => e9e5  => 0.8092041016  | error: 0.002%
0.7282709479  => 3f3a6ff7 => e74e  => 0.7282714844  | error: 0.000%
0.6554438472  => 3f27cb2b => e4f9  => 0.6553955078  | error: 0.007%
0.5898994207  => 3f1703a6 => e2e0  => 0.5898437500  | error: 0.009%
0.5309094787  => 3f07e9af => e0fd  => 0.5308837891  | error: 0.005%
0.4778185189  => 3ef4a4a1 => de95  => 0.4778442383  | error: 0.005%
0.4300366640  => 3edc2dc4 => db86  => 0.4300537109  | error: 0.004%
0.3870329857  => 3ec62930 => d8c5  => 0.3870239258  | error: 0.002%
0.3483296633  => 3eb25844 => d64b  => 0.3483276367  | error: 0.001%
0.3134966791  => 3ea082a3 => d410  => 0.3134765625  | error: 0.006%
0.2821469903  => 3e907592 => d20f  => 0.2821655273  | error: 0.007%
0.2539322972  => 3e82036a => d040  => 0.2539062500  | error: 0.010%
0.2285390645  => 3e6a0625 => cd41  => 0.2285461426  | error: 0.003%
0.2056851536  => 3e529f21 => ca54  => 0.2056884766  | error: 0.002%
0.1851166338  => 3e3d8f37 => c7b2  => 0.1851196289  | error: 0.002%
0.1666049659  => 3e2a9a7e => c553  => 0.1665954590  | error: 0.006%
0.1499444693  => 3e198b0b => c331  => 0.1499328613  | error: 0.008%
0.1349500120  => 3e0a3056 => c146  => 0.1349487305  | error: 0.001%
0.1214550063  => 3df8bd67 => bf18  => 0.1214599609  | error: 0.004%
0.1093095019  => 3ddfdda9 => bbfc  => 0.1093139648  | error: 0.004%
0.0983785465  => 3dc97ab1 => b92f  => 0.0983734131  | error: 0.005%
0.0885406882  => 3db554d2 => b6ab  => 0.0885467529  | error: 0.007%
0.0796866193  => 3da332bd => b466  => 0.0796813965  | error: 0.007%
0.0717179552  => 3d92e0dd => b25c  => 0.0717163086  | error: 0.002%
0.0645461604  => 3d8430c7 => b086  => 0.0645446777  | error: 0.002%
0.0580915436  => 3d6df166 => adbe  => 0.0580902100  | error: 0.002%
0.0522823893  => 3d56260f => aac5  => 0.0522842407  | error: 0.004%
0.0470541492  => 3d40bbda => a817  => 0.0470504761  | error: 0.008%
0.0423487313  => 3d2d75dd => a5af  => 0.0423507690  | error: 0.005%
0.0381138586  => 3d1c1d47 => a384  => 0.0381164551  | error: 0.007%
0.0343024731  => 3d0c80c0 => a190  => 0.0343017578  | error: 0.002%
0.0308722258  => 3cfce7c0 => 9f9d  => 0.0308723450  | error: 0.000%
0.0277850032  => 3ce39d60 => 9c74  => 0.0277862549  | error: 0.005%
0.0250065029  => 3cccda70 => 999b  => 0.0250053406  | error: 0.005%
0.0225058515  => 3cb85e31 => 970c  => 0.0225067139  | error: 0.004%
0.0202552658  => 3ca5ee5f => 94be  => 0.0202560425  | error: 0.004%
0.0182297379  => 3c955688 => 92ab  => 0.0182304382  | error: 0.004%
0.0164067633  => 3c86677a => 90cd  => 0.0164070129  | error: 0.002%
0.0147660868  => 3c71ed75 => 8e3e  => 0.0147666931  | error: 0.004%
0.0132894777  => 3c59bc1c => 8b38  => 0.0132904053  | error: 0.007%
0.0119605297  => 3c43f619 => 887f  => 0.0119609833  | error: 0.004%
0.0107644768  => 3c305d7d => 860c  => 0.0107650757  | error: 0.006%
0.0096880291  => 3c1eba8a => 83d7  => 0.0096874237  | error: 0.006%
0.0087192263  => 3c0edb16 => 81db  => 0.0087184906  | error: 0.008%
0.0078473035  => 3c0091fa => 8012  => 0.0078468323  | error: 0.006%
0.0070625730  => 3be76d28 => 7cee  => 0.0070629120  | error: 0.005%
0.0063563157  => 3bd048a4 => 7a09  => 0.0063562393  | error: 0.001%
0.0057206838  => 3bbb7493 => 776f  => 0.0057210922  | error: 0.007%
0.0051486152  => 3ba8b5b7 => 7517  => 0.0051488876  | error: 0.005%
0.0046337536  => 3b97d6be => 72fb  => 0.0046339035  | error: 0.003%
0.0041703782  => 3b88a7ab => 7115  => 0.0041704178  | error: 0.001%
0.0037533403  => 3b75fa9a => 6ebf  => 0.0037531853  | error: 0.004%
0.0033780062  => 3b5d618a => 6bac  => 0.0033779144  | error: 0.003%
0.0030402055  => 3b473e2f => 68e8  => 0.0030403137  | error: 0.004%
0.0027361847  => 3b335190 => 666a  => 0.0027360916  | error: 0.003%
0.0024625661  => 3b216301 => 642c  => 0.0024623871  | error: 0.007%
0.0022163095  => 3b113f81 => 6228  => 0.0022163391  | error: 0.001%
0.0019946785  => 3b02b927 => 6057  => 0.0019946098  | error: 0.003%
0.0017952106  => 3aeb4d46 => 5d6a  => 0.0017952919  | error: 0.005%
0.0016156895  => 3ad3c58b => 5a79  => 0.0016157627  | error: 0.005%
0.0014541205  => 3abe9830 => 57d3  => 0.0014541149  | error: 0.000%
0.0013087085  => 3aab88f8 => 5571  => 0.0013086796  | error: 0.002%
0.0011778376  => 3a9a61ac => 534c  => 0.0011777878  | error: 0.004%
0.0010600538  => 3a8af181 => 515e  => 0.0010600090  | error: 0.004%
0.0009540484  => 3a7a191b => 4f43  => 0.0009540319  | error: 0.002%
0.0008586436  => 3a611698 => 4c23  => 0.0008586645  | error: 0.002%
0.0007727792  => 3a4a9455 => 4953  => 0.0007728338  | error: 0.007%
0.0006955012  => 3a36524c => 46ca  => 0.0006954670  | error: 0.005%
0.0006259511  => 3a2416de => 4483  => 0.0006259680  | error: 0.003%
0.0005633560  => 3a13ae2e => 4276  => 0.0005633831  | error: 0.005%
0.0005070204  => 3a04e990 => 409d  => 0.0005069971  | error: 0.005%
0.0004563183  => 39ef3e03 => 3de8  => 0.0004563332  | error: 0.003%
0.0004106865  => 39d75169 => 3aea  => 0.0004106760  | error: 0.003%
0.0003696179  => 39c1c945 => 3839  => 0.0003696084  | error: 0.003%
0.0003326561  => 39ae6857 => 35cd  => 0.0003326535  | error: 0.001%
0.0002993904  => 399cf781 => 339f  => 0.0002993941  | error: 0.001%
0.0002694514  => 398d4527 => 31a9  => 0.0002694726  | error: 0.008%
0.0002425062  => 397e4946 => 2fc9  => 0.0002425015  | error: 0.002%
0.0002182556  => 3964db8b => 2c9b  => 0.0002182424  | error: 0.006%
0.0001964300  => 394df8ca => 29bf  => 0.0001964271  | error: 0.001%
0.0001767870  => 39395fe9 => 272c  => 0.0001767874  | error: 0.000%
0.0001591083  => 3926d651 => 24db  => 0.0001591146  | error: 0.004%
0.0001431975  => 39162749 => 22c5  => 0.0001432002  | error: 0.002%
0.0001288777  => 3907235b => 20e4  => 0.0001288652  | error: 0.010%
0.0001159900  => 38f33fa3 => 1e68  => 0.0001159906  | error: 0.001%
0.0001043910  => 38daec79 => 1b5e  => 0.0001043975  | error: 0.006%
0.0000939519  => 38c50806 => 18a1  => 0.0000939518  | error: 0.000%
0.0000845567  => 38b15405 => 162b  => 0.0000845641  | error: 0.009%
0.0000761010  => 389f986b => 13f3  => 0.0000761002  | error: 0.001%
0.0000684909  => 388fa2c6 => 11f4  => 0.0000684857  | error: 0.008%
0.0000616418  => 388145b2 => 1029  => 0.0000616461  | error: 0.007%