使用PCL进行点云下采样和法线估计

时间:2019-09-03 10:29:47

标签: c++ ros point-cloud-library normals downsampling

我正在研究降采样点云和正常估计。正常的估算值对我来说效果很好,并且也可以进行下采样;但是,当它们组合在一起时,它们无法工作,我收到以下消息:  (核心已弃)。下面是我的代码。任何帮助表示赞赏吗?

pcl::PCLPointCloud2 pcl_pc2;
pcl::PointCloud<pcl::PointXYZ>::Ptr temp_cloud2(new    pcl::PointCloud<pcl::PointXYZ>);

pcl_conversions::toPCL(*input,pcl_pc2);

pcl::PointCloud<pcl::PointXYZ>::Ptr temp_cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::fromPCLPointCloud2(pcl_pc2,*temp_cloud);

// Perform the actual filtering
pcl::VoxelGrid<pcl::PointXYZ> sor;
sor.setInputCloud (temp_cloud);
sor.setLeafSize (0.1f, 0.1f, 0.1f);
sor.filter (*temp_cloud2); 

//do stuff with temp_cloud here
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud (temp_cloud2);

// Create an empty kdtree representation, and pass it to the normal estimation object.
// Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
ne.setSearchMethod (tree);

// Output datasets
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);

// Use all neighbors in a sphere of radius 3cm
ne.setRadiusSearch (0.03);

// Compute the features
ne.compute (*cloud_normals);

1 个答案:

答案 0 :(得分:1)

为我解决了;我已将搜索半径从0.03更改为0.3,因为在0.03处由于下采样而没有点云数据。