我正在研究降采样点云和正常估计。正常的估算值对我来说效果很好,并且也可以进行下采样;但是,当它们组合在一起时,它们无法工作,我收到以下消息: (核心已弃)。下面是我的代码。任何帮助表示赞赏吗?
pcl::PCLPointCloud2 pcl_pc2;
pcl::PointCloud<pcl::PointXYZ>::Ptr temp_cloud2(new pcl::PointCloud<pcl::PointXYZ>);
pcl_conversions::toPCL(*input,pcl_pc2);
pcl::PointCloud<pcl::PointXYZ>::Ptr temp_cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::fromPCLPointCloud2(pcl_pc2,*temp_cloud);
// Perform the actual filtering
pcl::VoxelGrid<pcl::PointXYZ> sor;
sor.setInputCloud (temp_cloud);
sor.setLeafSize (0.1f, 0.1f, 0.1f);
sor.filter (*temp_cloud2);
//do stuff with temp_cloud here
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud (temp_cloud2);
// Create an empty kdtree representation, and pass it to the normal estimation object.
// Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
ne.setSearchMethod (tree);
// Output datasets
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
// Use all neighbors in a sphere of radius 3cm
ne.setRadiusSearch (0.03);
// Compute the features
ne.compute (*cloud_normals);
答案 0 :(得分:1)
为我解决了;我已将搜索半径从0.03
更改为0.3
,因为在0.03
处由于下采样而没有点云数据。