第一次提问者在这里。我无法在其他帖子中找到这个问题的答案(love stackexchange,btw)。
总之... 我通过素食包创建了一条稀疏曲线,我得到了一个非常混乱的情节,在情节的底部有一个非常厚的黑条,这掩盖了一些低多样性的样本线。 理想情况下,我想生成一个包含所有线条的图(169;我可以将其减少到144)但是制作一个复合图形,按样本年着色并为每个池塘制作不同类型的线条(即:2个样本年份: 2016年,2017年和3个池塘:1,2,5)。我使用了phyloseq来创建一个包含我所有数据的对象,然后将我的OTU丰度表与我的元数据分离成不同的对象(jt = OTU表和sampledata =元数据)。我目前的代码:
jt <- as.data.frame(t(j)) # transform it to make it compatible with the proceeding commands
rarecurve(jt
, step = 100
, sample = 6000
, main = "Alpha Rarefaction Curve"
, cex = 0.2
, color = sampledata$PondYear)
# A very small subset of the sample metadata
Pond Year
F16.5.d.1.1.R2 5 2016
F17.1.D.6.1.R1 1 2017
F16.1.D15.1.R3 1 2016
F17.2.D00.1.R2 2 2017
答案 0 :(得分:0)
以下是如何使用ggplot绘制稀疏曲线的示例。我使用了bioconductor提供的phyloseq包中提供的数据。
安装phyloseq:
source('http://bioconductor.org/biocLite.R')
biocLite('phyloseq')
library(phyloseq)
需要其他库
library(tidyverse)
library(vegan)
数据:
mothlist <- system.file("extdata", "esophagus.fn.list.gz", package = "phyloseq")
mothgroup <- system.file("extdata", "esophagus.good.groups.gz", package = "phyloseq")
mothtree <- system.file("extdata", "esophagus.tree.gz", package = "phyloseq")
cutoff <- "0.10"
esophman <- import_mothur(mothlist, mothgroup, mothtree, cutoff)
提取OTU表,转置并转换为数据框
otu <- otu_table(esophman)
otu <- as.data.frame(t(otu))
sample_names <- rownames(otu)
out <- rarecurve(otu, step = 5, sample = 6000, label = T)
现在你有一个列表,每个元素对应一个样本:
稍微清理一下清单:
rare <- lapply(out, function(x){
b <- as.data.frame(x)
b <- data.frame(OTU = b[,1], raw.read = rownames(b))
b$raw.read <- as.numeric(gsub("N", "", b$raw.read))
return(b)
})
标签列表
names(rare) <- sample_names
转换为数据框:
rare <- map_dfr(rare, function(x){
z <- data.frame(x)
return(z)
}, .id = "sample")
让我们看看它的样子:
head(rare)
sample OTU raw.read
1 B 1.000000 1
2 B 5.977595 6
3 B 10.919090 11
4 B 15.826125 16
5 B 20.700279 21
6 B 25.543070 26
用ggplot2绘图
ggplot(data = rare)+
geom_line(aes(x = raw.read, y = OTU, color = sample))+
scale_x_continuous(labels = scales::scientific_format())
素食主义情节:
rarecurve(otu, step = 5, sample = 6000, label = T) #low step size because of low abundance
可以根据该列添加一组分组和颜色。
以下是添加其他分组的示例。让我们假设您有一个表格:
groupings <- data.frame(sample = c("B", "C", "D"),
location = c("one", "one", "two"), stringsAsFactors = F)
groupings
sample location
1 B one
2 C one
3 D two
其中样本根据另一个特征进行分组。您可以使用lapply
或map_dfr
覆盖groupings$sample
并标记rare$location
。
rare <- map_dfr(groupings$sample, function(x){ #loop over samples
z <- rare[rare$sample == x,] #subset rare according to sample
loc <- groupings$location[groupings$sample == x] #subset groupings according to sample, if more than one grouping repeat for all
z <- data.frame(z, loc) #make a new data frame with the subsets
return(z)
})
head(rare)
sample OTU raw.read loc
1 B 1.000000 1 one
2 B 5.977595 6 one
3 B 10.919090 11 one
4 B 15.826125 16 one
5 B 20.700279 21 one
6 B 25.543070 26 one
让我们从这个
中获得一个体面的情节ggplot(data = rare)+
geom_line(aes(x = raw.read, y = OTU, group = sample, color = loc))+
geom_text(data = rare %>% #here we need coordinates of the labels
group_by(sample) %>% #first group by samples
summarise(max_OTU = max(OTU), #find max OTU
max_raw = max(raw.read)), #find max raw read
aes(x = max_raw, y = max_OTU, label = sample), check_overlap = T, hjust = 0)+
scale_x_continuous(labels = scales::scientific_format())+
theme_bw()