我正在LWJGL制作游戏,我正在尝试制作一个程序生成的行星(这个问题不一定与程序性地形生成有关,我知道如何在飞机上做它我认为它会有点类似)。我的问题是如何以编程方式生成具有顶点,索引和法线的球体,并将原点放在中间。我在互联网上环顾四周,只能找到生成顶点的方法。我不是要求你编写代码,但我希望在正确的方向上推动或者在这样做时需要一些资源。我想生成自己的球体而不是从模型中导入球体的原因是我可以轻松编辑顶点高度来制作地形,更改球体的大小以及轻松更改多边形数量。关于如何做到这一点我的想法如下。
获取顶点应计算圆周的顶点数(数字越高,poly越高)。将该数字除以360,然后每个三角形将旋转该数字,形成一个圆圈。然后使用相同的方法逐渐制作球体的其余部分。如果这是正确的方法,我将如何确定指数和法线?
或
获取球体应该来自原点的顶点数和半径。确定每个三角形应旋转的量。从指定的角度开始在顶部的两个三角形开始,然后从那里开始,直到它以相同的角度向下到达球体,然后反转角度并以相同的方式完成底部。但我又不知道如何生成指数或法线。
答案 0 :(得分:1)
以下伪代码通过沿着图层的圆周堆叠layerTile
个图层和circumferenceTile
个顶点位置来创建一个球体。
底部和顶层是帽子,其间的层是圆盘。 由于球体的中心是(0,0,0),因此顶点和法向矢量具有相同的方向。法向矢量被归一化,并从球体的中心指向球面。
纹理坐标包裹在两个半球上。因此,每层的半磁盘的端点被添加为分离点。这对于具有纹理坐标V = 1.0的点是重要的,否则它将是从纹理的末端到下一个半球的下一个部分的开始的脏过渡。在极冠上,顶点位置也是多个,具有不同的纹理坐标,以获得干净的纹理过渡。
AddVertex( x, y, z, nvX, nvY, nvZ, u, v );
AddFace( i1, i2, i3 );
AddFace( i1, i2, i3, i4 ) {AddFace( i1, i2, i3 ); AddFace( i1, i3, i4 ); }
int circumferenceTile = 18;
int layerTile = 18;
float radius = 1.0;
创建顶点和属性:
int circCnt = (int)( circumferenceTile + 0.5f );
if ( circCnt < 4 ) circCnt = 4;
int circCnt_2 = circCnt / 2;
int layerCount = (int)( layerTile + 0.5f );
if ( layerCount < 2 ) layerCount = 2;
for ( int tbInx = 0; tbInx <= layerCount; tbInx ++ )
{
float v = ( 1.0 - (float)tbInx / layerCount );
float heightFac = Math.sin( ( 1.0 - 2.0 * tbInx / layerCount ) * Math.PI/2.0 );
float cosUp = Math.sqrt( 1.0 - heightFac * heightFac );
float z = heightFac;
for ( int i = 0; i <= circCnt_2; i ++ )
{
float u = (float)i / (float)circCnt_2;
float angle = Math.PI * u;
float x = Math.cos( angle ) * cosUp;
float y = Math.sin( angle ) * cosUp;
AddVertex( x * radius, y * radius, z * radius, x, y, z, u, v );
}
for ( int i = 0; i <= circCnt_2; i ++ )
{
float u = (float)i / (float)circCnt_2;
float angle = Math.PI * u + Math.PI;
float x = Math.cos( angle ) * cosUp;
float y = Math.sin( angle ) * cosUp;
AddVertex( x * radius, y * radius, z * radius, x, y, z, u, v );
}
}
创建索引:
底帽
int circSize_2 = circCnt_2 + 1;
int circSize = circSize_2 * 2;
for ( int i = 0; i < circCnt_2; i ++ )
AddFace( circSize + i, circSize + i + 1, i );
for ( int i = circCnt_2+1; i < 2*circCnt_2+1; i ++ )
AddFace( circSize + i, circSize + i + 1, i );
光盘
for ( int tbInx = 1; tbInx < layerCount - 1; tbInx ++ )
{
int ringStart = tbInx * circSize;
int nextRingStart = (tbInx+1) * circSize;
for ( int i = 0; i < circCnt_2; i ++ )
AddFace( ringStart + i, nextRingStart + i, nextRingStart + i + 1, ringStart + i + 1 );
ringStart += circSize_2;
nextRingStart += circSize_2;
for ( int i = 0; i < circCnt_2; i ++ )
AddFace( ringStart + i, nextRingStart + i, nextRingStart + i + 1, ringStart + i + 1 );
}
大写
int start = (layerCount-1) * circSize;
for ( int i = 0; i < circCnt_2; i ++ )
AddFace( start + i + 1, start + i, start + i + circSize );
for ( int i = circCnt_2+1; i < 2*circCnt_2+1; i ++ )
AddFace( start + i + 1, start + i, start + i + circSize );
请参阅以下WebGL / JavaScript示例:
glArrayType = typeof Float32Array !="undefined" ? Float32Array : ( typeof WebGLFloatArray != "undefined" ? WebGLFloatArray : Array );
function IdentityMat44() {
var m = new glArrayType(16);
m[0] = 1; m[1] = 0; m[2] = 0; m[3] = 0;
m[4] = 0; m[5] = 1; m[6] = 0; m[7] = 0;
m[8] = 0; m[9] = 0; m[10] = 1; m[11] = 0;
m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1;
return m;
};
function RotateAxis(matA, angRad, axis) {
var aMap = [ [1, 2], [2, 0], [0, 1] ];
var a0 = aMap[axis][0], a1 = aMap[axis][1];
var sinAng = Math.sin(angRad), cosAng = Math.cos(angRad);
var matB = new glArrayType(16);
for ( var i = 0; i < 16; ++ i ) matB[i] = matA[i];
for ( var i = 0; i < 3; ++ i ) {
matB[a0*4+i] = matA[a0*4+i] * cosAng + matA[a1*4+i] * sinAng;
matB[a1*4+i] = matA[a0*4+i] * -sinAng + matA[a1*4+i] * cosAng;
}
return matB;
}
function Cross( a, b ) { return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], 0.0 ]; }
function Dot( a, b ) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }
function Normalize( v ) {
var len = Math.sqrt( v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
return [ v[0] / len, v[1] / len, v[2] / len ];
}
var Camera = {};
Camera.create = function() {
this.pos = [0, 1.5, 0.0];
this.target = [0, 0, 0];
this.up = [0, 0, 1];
this.fov_y = 90;
this.vp = [800, 600];
this.near = 0.5;
this.far = 100.0;
}
Camera.Perspective = function() {
var fn = this.far + this.near;
var f_n = this.far - this.near;
var r = this.vp[0] / this.vp[1];
var t = 1 / Math.tan( Math.PI * this.fov_y / 360 );
var m = IdentityMat44();
m[0] = t/r; m[1] = 0; m[2] = 0; m[3] = 0;
m[4] = 0; m[5] = t; m[6] = 0; m[7] = 0;
m[8] = 0; m[9] = 0; m[10] = -fn / f_n; m[11] = -1;
m[12] = 0; m[13] = 0; m[14] = -2 * this.far * this.near / f_n; m[15] = 0;
return m;
}
Camera.LookAt = function() {
var mz = Normalize( [ this.pos[0]-this.target[0], this.pos[1]-this.target[1], this.pos[2]-this.target[2] ] );
var mx = Normalize( Cross( this.up, mz ) );
var my = Normalize( Cross( mz, mx ) );
var tx = Dot( mx, this.pos );
var ty = Dot( my, this.pos );
var tz = Dot( [-mz[0], -mz[1], -mz[2]], this.pos );
var m = IdentityMat44();
m[0] = mx[0]; m[1] = my[0]; m[2] = mz[0]; m[3] = 0;
m[4] = mx[1]; m[5] = my[1]; m[6] = mz[1]; m[7] = 0;
m[8] = mx[2]; m[9] = my[2]; m[10] = mz[2]; m[11] = 0;
m[12] = tx; m[13] = ty; m[14] = tz; m[15] = 1;
return m;
}
// shader program object
var ShaderProgram = {};
ShaderProgram.Create = function( shaderList, uniformNames ) {
var shaderObjs = [];
for ( var i_sh = 0; i_sh < shaderList.length; ++ i_sh ) {
var shderObj = this.CompileShader( shaderList[i_sh].source, shaderList[i_sh].stage );
if ( shderObj == 0 )
return 0;
shaderObjs.push( shderObj );
}
var progObj = this.LinkProgram( shaderObjs )
if ( progObj != 0 ) {
progObj.unifomLocation = {};
for ( var i_n = 0; i_n < uniformNames.length; ++ i_n ) {
var name = uniformNames[i_n];
progObj.unifomLocation[name] = gl.getUniformLocation( progObj, name );
}
}
return progObj;
}
ShaderProgram.Use = function( progObj ) { gl.useProgram( progObj ); }
ShaderProgram.SetUniformInt = function( progObj, name, val ) { gl.uniform1i( progObj.unifomLocation[name], val ); }
ShaderProgram.SetUniformFloat = function( progObj, name, val ) { gl.uniform1f( progObj.unifomLocation[name], val ); }
ShaderProgram.SetUniform2f = function( progObj, name, arr ) { gl.uniform2fv( progObj.unifomLocation[name], arr ); }
ShaderProgram.SetUniform3f = function( progObj, name, arr ) { gl.uniform3fv( progObj.unifomLocation[name], arr ); }
ShaderProgram.SetUniformMat44 = function( progObj, name, mat ) { gl.uniformMatrix4fv( progObj.unifomLocation[name], false, mat ); }
ShaderProgram.CompileShader = function( source, shaderStage ) {
var shaderScript = document.getElementById(source);
if (shaderScript) {
source = "";
var node = shaderScript.firstChild;
while (node) {
if (node.nodeType == 3) source += node.textContent;
node = node.nextSibling;
}
}
var shaderObj = gl.createShader( shaderStage );
gl.shaderSource( shaderObj, source );
gl.compileShader( shaderObj );
var status = gl.getShaderParameter( shaderObj, gl.COMPILE_STATUS );
if ( !status ) alert(gl.getShaderInfoLog(shaderObj));
return status ? shaderObj : 0;
}
ShaderProgram.LinkProgram = function( shaderObjs ) {
var prog = gl.createProgram();
for ( var i_sh = 0; i_sh < shaderObjs.length; ++ i_sh )
gl.attachShader( prog, shaderObjs[i_sh] );
gl.linkProgram( prog );
status = gl.getProgramParameter( prog, gl.LINK_STATUS );
if ( !status ) alert("Could not initialise shaders");
gl.useProgram( null );
return status ? prog : 0;
}
function drawScene(){
var canvas = document.getElementById( "model-canvas" );
Camera.create();
Camera.vp = [canvas.width, canvas.height];
var currentTime = Date.now();
var deltaMS = currentTime - startTime;
gl.viewport( 0, 0, canvas.width, canvas.height );
gl.enable( gl.DEPTH_TEST );
gl.clearColor( 0.0, 0.0, 0.0, 1.0 );
gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );
var texUnit = 0;
gl.activeTexture( gl.TEXTURE0 + texUnit );
gl.bindTexture( gl.TEXTURE_2D, textureObj );
// set up draw shader
ShaderProgram.Use( progDraw );
ShaderProgram.SetUniformMat44( progDraw, "u_projectionMat44", Camera.Perspective() );
ShaderProgram.SetUniformMat44( progDraw, "u_viewMat44", Camera.LookAt() );
ShaderProgram.SetUniform3f( progDraw, "u_lightDir", [-1.0, -0.5, -2.0] )
ShaderProgram.SetUniform3f( progDraw, "u_color", [1.0, 0.5, 0.0] )
var modelMat = IdentityMat44()
modelMat = RotateAxis( modelMat, CalcAng( currentTime, 13.0 ), 0 );
modelMat = RotateAxis( modelMat, CalcAng( currentTime, 17.0 ), 1 );
ShaderProgram.SetUniformMat44( progDraw, "u_modelMat44", modelMat );
ShaderProgram.SetUniformInt( progDraw, "u_texture", texUnit );
// draw scene
bufObj = bufSphere;
gl.enableVertexAttribArray( progDraw.inPos );
gl.enableVertexAttribArray( progDraw.inNV );
gl.enableVertexAttribArray( progDraw.inTex );
gl.bindBuffer( gl.ARRAY_BUFFER, bufObj.pos );
gl.vertexAttribPointer( progDraw.inPos, 3, gl.FLOAT, false, 0, 0 );
gl.bindBuffer( gl.ARRAY_BUFFER, bufObj.nv );
gl.vertexAttribPointer( progDraw.inNV, 3, gl.FLOAT, false, 0, 0 );
gl.bindBuffer( gl.ARRAY_BUFFER, bufObj.tex );
gl.vertexAttribPointer( progDraw.inTex, 2, gl.FLOAT, false, 0, 0 );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, bufObj.inx );
gl.drawElements( gl.TRIANGLES, bufObj.inxLen, gl.UNSIGNED_SHORT, 0 );
gl.disableVertexAttribArray( progDraw.inPos );
gl.disableVertexAttribArray( progDraw.inNV );
gl.disableVertexAttribArray( progDraw.intex );
}
var startTime;
function Fract( val ) {
return val - Math.trunc( val );
}
function CalcAng( currentTime, varervall ) {
return Fract( (currentTime - startTime) / (1000*varervall) ) * 2.0 * Math.PI;
}
var sphere_pts = [];
var sphere_nv = [];
var sphere_tex = [];
var sphere_inx = [];
function AddVertex( x, y, z, nvX, nvY, nvZ, u, v )
{
sphere_pts.push( x, y, z );
sphere_nv.push( nvX, nvY, nvZ );
sphere_tex.push( u, v );
}
function AddFace( i1, i2, i3, i4 ) {
sphere_inx.push( i1, i2, i3 );
if ( i4 )
sphere_inx.push( i1, i3, i4 );
}
var gl;
var progDraw;
var bufSphere = {};
var textureObj;
function sceneStart() {
var canvas = document.getElementById( "model-canvas");
var vp = [canvas.width, canvas.height];
gl = canvas.getContext( "experimental-webgl" );
if ( !gl )
return;
progDraw = ShaderProgram.Create(
[ { source : "draw-shader-vs", stage : gl.VERTEX_SHADER },
{ source : "draw-shader-fs", stage : gl.FRAGMENT_SHADER }
],
[ "u_projectionMat44", "u_viewMat44", "u_modelMat44", "u_lightDir", "u_texture" ] );
progDraw.inPos = gl.getAttribLocation( progDraw, "inPos" );
progDraw.inNV = gl.getAttribLocation( progDraw, "inNV" );
progDraw.inTex = gl.getAttribLocation( progDraw, "inTex" );
if ( progDraw == 0 )
return;
// create sphere vertices
var layer_size = 16, circum_size = 32, radius = 1.0;
var circCnt = circum_size;
var circCnt_2 = circCnt / 2;
var layerCount = layer_size;
for ( var tbInx = 0; tbInx <= layerCount; tbInx ++ )
{
var v = ( 1.0 - tbInx / layerCount );
var heightFac = Math.sin( ( 1.0 - 2.0 * tbInx / layerCount ) * Math.PI/2.0 );
var cosUp = Math.sqrt( 1.0 - heightFac * heightFac );
var z = heightFac;
for ( var i = 0; i <= circCnt_2; i ++ )
{
var u = i / circCnt_2;
var angle = Math.PI * u;
var x = Math.cos( angle ) * cosUp;
var y = Math.sin( angle ) * cosUp;
AddVertex( x * radius, y * radius, z * radius, x, y, z, u, v );
}
for ( var i = 0; i <= circCnt_2; i ++ )
{
var u = i / circCnt_2;
var angle = Math.PI * u + Math.PI;
var x = Math.cos( angle ) * cosUp;
var y = Math.sin( angle ) * cosUp;
AddVertex( x * radius, y * radius, z * radius, x, y, z, u, v );
}
}
// bottom cap
var circSize_2 = circCnt_2 + 1;
var circSize = circSize_2 * 2;
for ( var i = 0; i < circCnt_2; i ++ )
AddFace( circSize + i, circSize + i + 1, i );
for ( var i = circCnt_2+1; i < 2*circCnt_2+1; i ++ )
AddFace( circSize + i, circSize + i + 1, i );
// discs
for ( var tbInx = 1; tbInx < layerCount - 1; tbInx ++ )
{
var ringStart = tbInx * circSize;
var nextRingStart = (tbInx+1) * circSize;
for ( var i = 0; i < circCnt_2; i ++ )
AddFace( ringStart + i, nextRingStart + i, nextRingStart + i + 1, ringStart + i + 1 );
ringStart += circSize_2;
nextRingStart += circSize_2;
for ( var i = 0; i < circCnt_2; i ++ )
AddFace( ringStart + i, nextRingStart + i, nextRingStart + i + 1, ringStart + i + 1 );
}
// top cap
var start = (layerCount-1) * circSize;
for ( var i = 0; i < circCnt_2; i ++ )
AddFace( start + i + 1, start + i, start + i + circSize );
for ( var i = circCnt_2+1; i < 2*circCnt_2+1; i ++ )
AddFace( start + i + 1, start + i, start + i + circSize );
bufSphere.pos = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, bufSphere.pos );
gl.bufferData( gl.ARRAY_BUFFER, new Float32Array( sphere_pts ), gl.STATIC_DRAW );
bufSphere.nv = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, bufSphere.nv );
gl.bufferData( gl.ARRAY_BUFFER, new Float32Array( sphere_nv ), gl.STATIC_DRAW );
bufSphere.tex = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, bufSphere.tex );
gl.bufferData( gl.ARRAY_BUFFER, new Float32Array( sphere_tex ), gl.STATIC_DRAW );
bufSphere.inx = gl.createBuffer();
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, bufSphere.inx );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, new Uint16Array( sphere_inx ), gl.STATIC_DRAW );
bufSphere.inxLen = sphere_inx.length;
var texCX = 128;
var texCY = 128;
var texPlan = [];
for (ix = 0; ix < texCX; ++ix) {
for (iy = 0; iy < texCY; ++iy) {
var val_x = Math.sin( Math.PI * 12.0 * ix / texCX )
var val_y = Math.sin( Math.PI * 12.0 * iy / texCY )
var r = val_x < -0.33 ? 0 : ( val_x < 0.33 ? 127 : 255 );
var g = val_x < -0.33 ? 255 : ( val_x < 0.33 ? 127 : 0 );
var b = val_y < -0.33 ? 0 : ( val_y < 0.33 ? 127 : 255 );
texPlan.push( r, g, b, 255 );
}
}
textureObj = gl.createTexture();
gl.activeTexture( gl.TEXTURE0 );
gl.bindTexture( gl.TEXTURE_2D, textureObj );
gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, texCX, texCY, 0, gl.RGBA, gl.UNSIGNED_BYTE, new Uint8Array( texPlan ) );
gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, true );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT );
startTime = Date.now();
setInterval(drawScene, 50);
}
<script id="draw-shader-vs" type="x-shader/x-vertex">
precision mediump float;
attribute vec3 inPos;
attribute vec3 inNV;
attribute vec2 inTex;
varying float NdotL;
varying vec2 texCoord;
uniform mat4 u_projectionMat44;
uniform mat4 u_viewMat44;
uniform mat4 u_modelMat44;
uniform vec3 u_lightDir;
void main()
{
vec3 modelNV = mat3( u_modelMat44 ) * normalize( inNV );
vec3 normalV = mat3( u_viewMat44 ) * modelNV;
vec3 lightV = normalize( -u_lightDir );
NdotL = max( 0.0, dot( normalV, lightV ) );
texCoord = inTex;
vec4 modelPos = u_modelMat44 * vec4( inPos, 1.0 );
vec4 viewPos = u_viewMat44 * modelPos;
gl_Position = u_projectionMat44 * viewPos;
}
</script>
<script id="draw-shader-fs" type="x-shader/x-fragment">
precision mediump float;
varying float NdotL;
varying vec2 texCoord;
uniform sampler2D u_texture;
void main()
{
vec3 texColor = texture2D( u_texture, texCoord.st ).rgb;
vec3 lightCol = (0.2 + 0.8 * NdotL) * texColor.rgb;
gl_FragColor = vec4( lightCol.rgb, 1.0 );
}
</script>
<body onload="sceneStart();">
<canvas id="model-canvas" style="border: none;" width="256" height="256"></canvas>
</body>
答案 1 :(得分:0)
最简单的方法是从spherical coordinate system开始,您可以想象在纬度上从0到360°的-90°到90°(或径向角度为-pi到pi)的规则网格间距在经度上。如果将此网格从球坐标转换为笛卡尔坐标(半径= 1或您想要的其他半径)
法线实际上很容易生成:由于球体的中心位于(0,0,0)
,因此向量(x,y,z)
的法线就是标准化向量(x,y,z)/length(x,y,z)
还记得我是如何将球体描述为规则网格的吗?
更确切地说,网格上的点是(longitude, latitude)
对形式的
(i * lon_step_size - 90°, j * lat_step_size)
。您可以使用索引i * num_lat_steps + j
,通过展平存储顶点的2D数组来简单地对它们进行索引
其中num_lat_steps - 1
是j
的最大值。
要构建索引缓冲区,只需使用此索引将(i,j),(i+1,j),(i,j+1)
和(i+1,j+1),(i,j+1),(i+1,j)
处的顶点连接到网格中每个索引对(i,j)
的三角形。
请注意,使用此方法时,有两个点(lat = 90°或lat = -90°)在顶点缓冲区中出现多次。如果你想消除这些重复,你的索引变得有点棘手,但你可能不会,反正(这不是那么多的开销)。