我是分析算法和时间的新手。这个算法发布在http://geeksforgeeks.com中,他们写道算法的时间复杂度是O(V ^ 2)我认为它是O(V ^ 3):
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
// A utility function to print the constructed distance array
int printSolution(int dist[], int n)
{
printf("Vertex Distance from Source\n");
for (int i = 0; i < V; i++)
printf("%d \t\t %d\n", i, dist[i]);
}
// Funtion that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
int dist[V]; // The output array. dist[i] will hold the shortest
// distance from src to i
bool sptSet[V]; // sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized
// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V-1; count++)
{
// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in first iteration.
int u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent vertices of the picked vertex.
for (int v = 0; v < V; v++)
// Update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX
&& dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
// print the constructed distance array
printSolution(dist, V);
}
图形表示在图形[] [](矩阵表示)中。
提前致谢
答案 0 :(得分:2)
解决方案确实是O(V ^ 2):
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
这部分在主循环之前运行,并且在O(V)的复杂性中运行。
for (int count = 0; count < V-1; count++)
{
这是主循环,整体运行O(V)
次,每次需要:
int u = minDistance(dist, sptSet);
每个count
的不同值运行一次,其复杂度为O(V)
,所以我们现在有O(V ^ 2)`。
sptSet[u] = true;
这是O(1),运行O(V)次。
for (int v = 0; v < V; v++)
此循环运行O(V)次,对于count
的每个值,让我们检查每次运行时会发生什么:
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX
&& dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
所有这些都是O(1)
,每个(count,v)
对完成,并且有O(V^2)
对。
所以,完全O(V^2)
。
请注意,为了更有效的图形表示,我们可以在O(E + VlogV)
中运行Dijkstra算法,这在稀疏图形的情况下可能更好。