下面是使用回溯查找图中是否存在哈密尔顿路径的代码。根据下面的代码,时间复杂度为O(V^2)
,其中V
是顶点的总数。但哈密顿量问题是NP完全的。根据我的理解,这是一个在多项式时间n^k
中无法解决的问题,其中n
是输入而k
是常量。我已经测试了下面的代码并且工作正常。那么我是否错误地计算时间复杂度?
public boolean check() {
Stack<Node> nodeStack = new Stack<>();
nodeStack.add(root);
root.setIsOnStack();
while (!nodeStack.isEmpty()) {
Node currentNode = nodeStack.peek();
for (Entry<Node, Boolean> entry : currentNode.getNeighbourList().entrySet()) {
Node currentNeighbourer = entry.getKey();
if (!currentNeighbourer.isOnStack()) {
if (!entry.getValue()) {
nodeStack.push(currentNeighbourer);
currentNeighbourer.setIsOnStack();
break;
}
} else if (currentNeighbourer == root && nodeStack.size() == noOfVertices) {
return true;
}
}
if (currentNode == nodeStack.peek()) {
for (Entry<Node, Boolean> entry : currentNode.getNeighbourList().entrySet()) {
currentNode.setNodeIsNotVisited(entry.getKey());
}
nodeStack.pop();
currentNode.setIsNotOnStack();
Node nodeOnTop = nodeStack.peek();
nodeOnTop.setNodeIsVisited(currentNode);
}
}
return false;
}
节点类:
public class Node {
private final char label;
private Map<Node, Boolean> neighbourList;
private boolean isOnStack;
public Node(char label) {
this.label = label;
this.isOnStack = false;
neighbourList = new LinkedHashMap<>();
}
public char getLabel() {
return label;
}
public void addNeighbour(Node node) {
neighbourList.put(node, false);
}
public boolean isOnStack() {
return isOnStack;
}
public void setIsOnStack() {
isOnStack = true;
}
public void setIsNotOnStack() {
isOnStack = false;
}
public Map<Node, Boolean> getNeighbourList() {
return neighbourList;
}
public void setNodeIsVisited(Node node) {
neighbourList.replace(node, true);
}
public void setNodeIsNotVisited(Node node) {
neighbourList.replace(node, false);
}
public boolean isNodeVisited(Node node) {
return neighbourList.get(node);
}
}