我尝试使用多处理加速我的某个应用程序导致性能降低。我确信这是一个设计缺陷,但这是讨论的重点 - 如何更好地解决这个问题,以便利用多处理。
我目前在1.4ghz原子上的结果:
可以复制和粘贴这两个版本的代码供您查看。数据集位于底部,也可以粘贴。 (我决定不使用xrange来说明问题)
首先是SP版本:
*PASTE DATA HERE*
def calc():
for i, valD1 in enumerate(D1):
for i, valD2 in enumerate(D2):
for i, valD3 in enumerate(D3):
for i, valD4 in enumerate(D4):
for i, valD5 in enumerate(D5):
for i, valD6 in enumerate(D6):
for i, valD7 in enumerate(D7):
sol1=float(valD1[1]+valD2[1]+valD3[1]+valD4[1]+valD5[1]+valD6[1]+valD7[1])
sol2=float(valD1[2]+valD2[2]+valD3[2]+valD4[2]+valD5[2]+valD6[2]+valD7[2])
return None
print(calc())
现在是MP版本:
import multiprocessing
import itertools
*PASTE DATA HERE*
def calculate(vals):
sol1=float(valD1[0]+valD2[0]+valD3[0]+valD4[0]+valD5[0]+valD6[0]+valD7[0])
sol2=float(valD1[1]+valD2[1]+valD3[1]+valD4[1]+valD5[1]+valD6[1]+valD7[1])
return none
def process():
pool = multiprocessing.Pool(processes=4)
prod = itertools.product(([x[1],x[2]] for x in D1), ([x[1],x[2]] for x in D2), ([x[1],x[2]] for x in D3), ([x[1],x[2]] for x in D4), ([x[1],x[2]] for x in D5), ([x[1],x[2]] for x in D6), ([x[1],x[2]] for x in D7))
result = pool.imap(calculate, prod, chunksize=2500)
pool.close()
pool.join()
return result
if __name__ == "__main__":
print(process())
两者的数据:
D1 = [['A',7,4],['B',3,7],['C',6,1],['D',12,6],['E',4,8],['F',8,7],['G',11,3],['AX',11,7],['AX',11,2],['AX',11,4],['AX',11,4]]
D2 = [['A',7,4],['B',3,7],['C',6,1],['D',12,6],['E',4,8],['F',8,7],['G',11,3],['AX',11,7],['AX',11,2],['AX',11,4],['AX',11,4]]
D3 = [['A',7,4],['B',3,7],['C',6,1],['D',12,6],['E',4,8],['F',8,7],['G',11,3],['AX',11,7],['AX',11,2],['AX',11,4],['AX',11,4]]
D4 = [['A',7,4],['B',3,7],['C',6,1],['D',12,6],['E',4,8],['F',8,7],['G',11,3],['AX',11,7],['AX',11,2],['AX',11,4],['AX',11,4]]
D5 = [['A',7,4],['B',3,7],['C',6,1],['D',12,6],['E',4,8],['F',8,7],['G',11,3],['AX',11,7],['AX',11,2],['AX',11,4],['AX',11,4]]
D6 = [['A',7,4],['B',3,7],['C',6,1],['D',12,6],['E',4,8],['F',8,7],['G',11,3],['AX',11,7],['AX',11,2],['AX',11,4],['AX',11,4]]
D7 = [['A',7,4],['B',3,7],['C',6,1],['D',12,6],['E',4,8],['F',8,7],['G',11,3],['AX',11,7],['AX',11,2],['AX',11,4],['AX',11,4]]
现在理论:
由于几乎没有实际工作(只是总计7个整数),因此CPU绑定数据太多而进程间通信会产生太多开销,使多处理有效。这似乎是我真正需要多线程能力的情况。因此,在此之前,由于GIL,我在尝试使用其他语言之前正在寻找建议。
********调试
File "calc.py", line 309, in <module>
smart_calc()
File "calc.py", line 290, in smart_calc
results = pool.map(func, chunk_list)
File "/usr/local/lib/python2.7/multiprocessing/pool.py", line 250, in map
return self.map_async(func, iterable, chunksize).get()
File "/usr/local/lib/python2.7/multiprocessing/pool.py", line 554, in get
raise self._value
TypeError: sequence index must be integer, not 'slice'
在这种情况下,totallen = 108并且CHUNKS设置为2.当CHUNKS减少到1时,它可以工作。
答案 0 :(得分:1)
好吧,我想我已经发现实际上可以从多处理中获得速度提升。由于您的实际源列表不是很长,因此将它们全部传递给工作进程是合理的。因此,如果每个工作进程都有相同源列表的副本,那么理想情况下我们希望所有这些进程并行迭代不同的列表,并只是总结该唯一的切片。因为我们知道输入列表的大小,所以我们可以准确地确定itertools.product(D1, D2, ...)
的长度,这意味着我们还可以准确地确定每个块应该有多大来均匀分配工作。因此,我们可以为每个worker提供一个特定范围的itertools.product
迭代器,它们应该迭代并求和:
import math
import itertools
import multiprocessing
import functools
def smart_calc(valD1, valD2, valD3, valD4, valD5, valD6, valD7, slices):
# Build an iterator over the entire data set
prod = itertools.product(([x[1],x[2]] for x in valD1),
([x[1],x[2]] for x in valD2),
([x[1],x[2]] for x in valD3),
([x[1],x[2]] for x in valD4),
([x[1],x[2]] for x in valD5),
([x[1],x[2]] for x in valD6),
([x[1],x[2]] for x in valD7))
# But only iterate over our unique slice
for subD1, subD2, subD3, subD4, subD5, subD6, subD7 in itertools.islice(prod, slices[0], slices[1]):
sol1=float(subD1[0]+subD2[0]+subD3[0]+subD4[0]+subD5[0]+subD6[0]+subD7[0])
sol2=float(subD1[1]+subD2[1]+subD3[1]+subD4[1]+subD5[1]+subD6[1]+subD7[1])
return None
def smart_process():
CHUNKS = multiprocessing.cpu_count() # Number of pieces to break the list into.
total_len = len(D1) ** 7 # The total length of itertools.product()
# Figure out how big each chunk should be. Got this from
# multiprocessing.map()
chunksize, extra = divmod(total_len, CHUNKS)
if extra:
chunksize += 1
# Build a list that has the low index and high index for each
# slice of the list. Each process will iterate over a unique
# slice
low = 0
high = chunksize
chunk_list = []
for _ in range(CHUNKS):
chunk_list.append((low, high))
low += chunksize
high += chunksize
pool = multiprocessing.Pool(processes=CHUNKS)
# Use partial so we can pass all the lists to each worker
# while using map (which only allows one arg to be passed)
func = functools.partial(smart_calc, D1, D2, D3, D4, D5, D6, D7)
result = pool.map(func, chunk_list)
pool.close()
pool.join()
return result
结果:
sequential: 13.9547419548
mp: 4.0270690918
成功!现在,您必须在拥有它们之后实际组合结果,这将为您的真实程序增加额外的开销。它可能最终使这种方法再次比顺序更慢,但它实际上取决于你实际想要对数据做什么。