我在python中遇到多处理问题。我知道它可能比序列化计算慢,这不是我的帖子。
我只是在徘徊为什么单个进程池比我的基本问题的序列化计算更快。这些时间不应该相同吗?
以下是代码:
import time
import multiprocessing as mp
import matplotlib.pyplot as plt
def func(x):
return x*x*x
def multi_proc(nb_procs):
tic = time.time()
pool = mp.Pool(processes=nb_procs)
pool.map_async(func, range(1, 10000000))
toc = time.time()
return toc-tic
def single_core():
tic = time.time()
[func(x) for x in range(1, 10000000)]
toc = time.time()
return toc-tic
if __name__ == '__main__':
sc_times = [0]
mc_times = [0]
print('single core computation')
sc_constant_time = single_core()
print('{} secs'.format(sc_constant_time))
for nb_procs in range(1, 12):
print('computing for {} processes...'.format(nb_procs))
time_elapsed = (multi_proc(nb_procs))
print('{} secs'.format(time_elapsed))
mc_times.append(time_elapsed)
sc_times = [sc_constant_time for _ in mc_times]
plt.plot(sc_times, 'r--')
plt.plot(mc_times, 'b--')
plt.xlabel('nb procs')
plt.ylabel('time (s)')
plt.show()
编辑1: 我按照Sidhnarth Gupta的说法修改了我的代码,这是我的新代码。我无缘无故改变了我的功能。
import time
import multiprocessing as mp
import matplotlib.pyplot as plt
import random
def func(x):
return random.choice(['a', 'b', 'c', 'd', 'e', 'f', 'g'])
def multi_proc(nb_procs, nb_iter):
tic = time.time()
pool = mp.Pool(processes=nb_procs)
pool.map_async(func, range(1, nb_iter)).get()
toc = time.time()
return toc-tic
def single_core(nb_iter):
tic = time.time()
[func(x) for x in range(1, nb_iter)]
toc = time.time()
return toc-tic
if __name__ == '__main__':
# configure
nb_iter = 100000
max_procs = 16
sc_times = [0]
mc_times = [0]
# multi proc calls
for nb_procs in range(1, max_procs):
print('computing for {} processes...'.format(nb_procs))
time_elapsed = (multi_proc(nb_procs, nb_iter))
print('{} secs'.format(time_elapsed))
mc_times.append(time_elapsed)
# single proc call
print('single core computation')
for nb in range(1, len(mc_times)):
print('{}...'.format(nb))
sc_times.append(single_core(nb_iter))
# average time
average_time = sum(sc_times)/len(sc_times)
print('average time on single core: {} secs'.format(average_time))
# plot
plt.plot(sc_times, 'r--')
plt.plot(mc_times, 'b--')
plt.xlabel('nb procs')
plt.ylabel('time (s)')
plt.show()
这是我有的新情节:
我想我现在可以说我通过使用多处理来提高程序的速度。
答案 0 :(得分:2)
计算多处理所用时间的当前代码实际上是告诉进程将任务提交到池所花费的时间。处理实际上是在异步模式下发生而不阻塞线程。
我尝试了以下更改程序:
def multi_proc(nb_procs):
tic = time.time()
pool = mp.Pool(processes=nb_procs)
pool.map_async(func, range(1, 10000000)).get()
toc = time.time()
return toc-tic
和
def multi_proc(nb_procs):
tic = time.time()
pool = mp.Pool(processes=nb_procs)
pool.map(func, range(1, 10000000))
toc = time.time()
return toc-tic
它们比系列化计算花费的时间要多得多。
同样在创建此类图形时,还应考虑在每次要映射值时调用single_core()函数,而不是多次映射相同的值。您会看到相同的时间差异很大。