简要概述 - 我写了一些带有大量随机数的随机文件到光盘来测试python多处理与顺序操作的性能。
功能描述
putfiles :将测试文件写入驱动器
readFile :读取传递的文件位置并返回结果(代码中的数字总和)
getSequential :使用for循环
读取一些文件getParallel :读取包含多个进程的文件
性能结果:(读取并处理100个文件,包括顺序和进程池)
timeit getSequential(numFiles = 100) - 最好的2.85s
timeit getParallel(numFiles = 100,numProcesses = 4)-960ms最佳
timeit getParallel(numFiles = 100,numProcesses = 1) - 最好980ms
import os
import random
from multiprocessing import Pool
os.chdir('/Users/test/Desktop/filewritetest')
def putfiles(numFiles=5, numCount=100):
#numFiles = int(input("how many files?: "))
#numCount = int(input('How many random numbers?: '))
for num in range(numFiles):
with open('r' + str(num) + '.txt', 'w') as f:
f.write("\n".join([str(random.randint(1, 100)) for i in range(numCount)]))
def readFile(fileurl):
with open(fileurl, 'r') as f, open("ans_" + fileurl, 'w') as fw:
fw.write(str((sum([int(i) for i in f.read().split()]))))
def getSequential(numFiles=5):
#in1 = int(input("how many files?: "))
for num in range(numFiles):
(readFile('r' + str(num) + '.txt'))
def getParallel(numFiles=5, numProcesses=2):
#numFiles = int(input("how many files?: "))
#numProcesses = int(input('How many processes?: '))
with Pool(numProcesses) as p:
p.map(readFile, ['r' + str(num) + '.txt' for num in range(numFiles)])
#putfiles()
putfiles(numFiles=1000, numCount=100000)
timeit getSequential(numFiles=100)
##around 2.85s best
timeit getParallel(numFiles=100, numProcesses=1)
##around 980ms best
timeit getParallel(numFiles=100, numProcesses=4)
##around 960ms best
更新:在sypder的新会话中,我没有看到这个问题。更新了
下的运行时
##100 files
#around 2.97s best
timeit getSequential(numFiles=100)
#around 2.99s best
timeit getParallel(numFiles=100, numProcesses=1)
#around 1.57s best
timeit getParallel(numFiles=100, numProcesses=2)
#around 942ms best
timeit getParallel(numFiles=100, numProcesses=4)
##1000 files
#around 29.3s best
timeit getSequential(numFiles=1000)
#around 11.8s best
timeit getParallel(numFiles=1000, numProcesses=4)
#around 9.6s best
timeit getParallel(numFiles=1000, numProcesses=16)
#around 9.65s best #let pool choose best default value
timeit getParallel(numFiles=1000)
答案 0 :(得分:0)
请不要将此视为一个答案,它是为了在python 3.x中运行这些东西时显示我的代码(你的timeit用法对我来说根本不起作用,我认为它是2.x)。抱歉,我现在没有时间深入研究它。
旋转驱动器上的[EDIT],考虑磁盘缓存:不要在不同的测试中访问相同的文件,或者只是切换测试的顺序以查看是否涉及磁盘缓存
使用以下代码,手动更改numProcesses = X参数,我得到了以下结果:
在SSD上,1000个顺序为0.31秒,1000个并列为1个螺纹为0.37秒,使用4个螺纹为0.23 1000个并列
import os
import random
import timeit
from multiprocessing import Pool
from contextlib import closing
os.chdir('c:\\temp\\')
def putfiles(numFiles=5, numCount=1):
#numFiles = int(input("how many files?: "))
#numCount = int(input('How many random numbers?: '))
for num in range(numFiles):
#print("num: " + str(num))
with open('r' + str(num) + '.txt', 'w') as f:
f.write("\n".join([str(random.randint(1, 100)) for i in range( numCount )]))
#print ("pufiles done")
def readFile(fileurl):
with open(fileurl, 'r') as f, open("ans_" + fileurl, 'w') as fw:
fw.write(str((sum([int(i) for i in f.read().split()]))))
def getSequential(numFiles=10000):
# print ("getSequential, nufile: " + str (numFiles))
#in1 = int(input("how many files?: "))
for num in range(numFiles):
#print ("getseq for")
(readFile('r' + str(num) + '.txt'))
#print ("getSequential done")
def getParallel(numFiles=10000, numProcesses=1):
#numFiles = int(input("how many files?: "))
#numProcesses = int(input('How many processes?: '))
#readFile, ['r' + str(num) + '.txt' for num in range(numFiles)]
#with Pool(10) as p:
with closing(Pool(processes=1)) as p:
p.map(readFile, ['r' + str(num) + '.txt' for num in range(numFiles)])
if __name__ == '__main__':
#putfiles(numFiles=10000, numCount=1)
print (timeit.timeit ("getSequential()","from __main__ import getSequential",number=1))
print (timeit.timeit ("getParallel()","from __main__ import getParallel",number=1))
#timeit (getParallel(numFiles=100, numProcesses=4)) #-around 960ms best
#timeit (getParallel(numFiles=100, numProcesses=1)) #-around 980ms best