我正在尝试使用多重处理来跨多个进程运行许多模拟;但是,据我所知,我编写的代码仅使用其中一个进程。
已更新
由于@PaulBecotte,我已经使所有流程都能正常工作(我认为);但是,多处理似乎比非多处理要慢得多。
例如,不包括函数和类的声明/实现和导入,我有:
def monty_hall_sim(num_trial, player_type='AlwaysSwitchPlayer'):
if player_type == 'NeverSwitchPlayer':
player = NeverSwitchPlayer('Never Switch Player')
else:
player = AlwaysSwitchPlayer('Always Switch Player')
return (MontyHallGame().play_game(player) for trial in xrange(num_trial))
def do_work(in_queue, out_queue):
while True:
try:
f, args = in_queue.get()
ret = f(*args)
for result in ret:
out_queue.put(result)
except:
break
def main():
logging.getLogger().setLevel(logging.ERROR)
always_switch_input_queue = multiprocessing.Queue()
always_switch_output_queue = multiprocessing.Queue()
total_sims = 20
num_processes = 5
process_sims = total_sims/num_processes
with Timer(timer_name='Always Switch Timer'):
for i in xrange(num_processes):
always_switch_input_queue.put((monty_hall_sim, (process_sims, 'AlwaysSwitchPlayer')))
procs = [multiprocessing.Process(target=do_work, args=(always_switch_input_queue, always_switch_output_queue)) for i in range(num_processes)]
for proc in procs:
proc.start()
always_switch_res = []
while len(always_switch_res) != total_sims:
always_switch_res.append(always_switch_output_queue.get())
always_switch_success = float(always_switch_res.count(True))/float(len(always_switch_res))
print '\tLength of Always Switch Result List: {alw_sw_len}'.format(alw_sw_len=len(always_switch_res))
print '\tThe success average of switching doors was: {alw_sw_prob}'.format(alw_sw_prob=always_switch_success)
产生:
Time Elapsed: 1.32399988174 seconds
Length: 20
The success average: 0.6
但是,我试图将其用于total_sims = 10,000,000
上的num_processes = 5
,并且比使用1个进程花费的时间要长得多(在1分钟内返回了1个进程)。我正在与之进行比较的非多处理对象是:
def main():
logging.getLogger().setLevel(logging.ERROR)
with Timer(timer_name='Always Switch Monty Hall Timer'):
always_switch_res = [MontyHallGame().play_game(AlwaysSwitchPlayer('Monty Hall')) for x in xrange(10000000)]
always_switch_success = float(always_switch_res.count(True))/float(len(always_switch_res))
print '\n\tThe success average of not switching doors was: {not_switching}' \
'\n\tThe success average of switching doors was: {switching}'.format(not_switching=never_switch_success,
switching=always_switch_success)
答案 0 :(得分:0)
编辑-您更改了一些内容,让我尝试更好地解释。
您输入到输入队列中的每条消息都会导致monty_hall_sim函数被调用,并将num_trial条消息发送到输出队列。
所以您最初的实现是正确的-获得20条输出消息,发送5条输入消息。
但是,您的功能略有错误。
for trial in xrange(num_trial):
res = MontyHallGame().play_game(player)
yield res
这会将函数转换为生成器,该生成器将在每个next()调用中提供新值!问题在这里
while True:
try:
f, args = in_queue.get(timeout=1)
ret = f(*args)
out_queue.put(ret.next())
except:
break
在这里,每次循环时,您都会创建一个带有NEW消息的NEW生成器。旧的被扔掉了。因此,在这里,每条输入消息仅在队列中添加一条输出消息,然后再将其丢弃并得到另一条。正确的写法是-
while True:
try:
f, args = in_queue.get(timeout=1)
ret = f(*args)
for result in ret:
out_queue.put(ret.next())
except:
break
以这种方式进行操作将继续从生成器产生输出消息,直到完成为止(在这种情况下,在生成4条消息之后)
答案 1 :(得分:0)
您可以尝试在某些if语句下导入“ process”
答案 2 :(得分:0)
通过将monty_hall_sim的返回值更改为列表理解,让do_work将列表添加到输出队列中,然后使用输出队列返回的列表扩展main的结果列表,我能够使我的代码运行得更快。使它在大约13秒内运行。