省略计算素数的方法的细节,以及因子分解的方法。
答案 0 :(得分:10)
具有讽刺意味的是,这个问题是一个重要的有效答案。
因子分解实际上在加密/解密算法中被大量使用,以至于RSA经常进行竞争,其中任务是将某些大数是非常大的素数的倍数分解。
反过来,这是因为几个加密/解密算法基于这样一个前提,即因子分解需要很长时间,这(假设)使得破解某些加密/解密算法变得困难和/或不切实际,假设黑客/黑客无法访问公钥/私钥。然后可以使用因子分解算法来验证任何给定的加密/解密算法的强度。
答案 1 :(得分:4)
作为RSA / DAS的非对称加密基于这样一个事实,即分解是一件非常困难的事情。如果我给你一个数字,打印出来的时候就像整个报纸一样大,并告诉你“这个数字是通过乘以两个素数产生的。现在请把它分解”......你觉得可以吗?相信我,任何已知的方法都会花费一个永恒的时间。如果不需要大量的CPU时间(几个世纪)或大量的内存(比世界上所有互联网服务器都拥有的存储空间更多),就没有有效的方法。如果您找到一种简单的方法来将数字大小分解,则可以打破电子邮件签名和SSL(HTTPS)。
但是,还有其他与分解相关的任务。因子分解不仅仅与数字有关。有时它是关于“为什么多项式是另一个多项式的因子”。因此,数学任务可能依赖于因子分解,因此可以解决许多问题。因此,有效的分解具有重要价值。甚至矩阵都可以分解。
答案 2 :(得分:-1)