我已经尝试证明有趣的bubble_main
是有序的,但似乎没有方法可行。有人可以帮我证明这个引理is_ordered (bubble_main L)
。
我只是删除了以前的所有引理,因为似乎没有人帮助 Isabelle 找到证据。 这是我的代码/理论:
text{*check if the list is ordered ascendant*}
fun is_sorted :: "nat list ⇒ bool" where
"is_sorted (x1 # x2 # xs) = (x1 < x2 ∧ is_sorted (x2 # xs))" |
"is_sorted x = True"
fun bubble_once :: "nat list ⇒ nat list" where
"bubble_once (x1 # x2 # xs) = (if x1 < x2
then x1 # bubble_once (x2 # xs)
else x2 # bubble_once (x1 # xs))" |
"bubble_once xs = xs"
text{*calls fun bubble_once *}
fun bubble_all where
"bubble_all 0 L = L"|
"bubble_all (Suc n) L = burbuja_all n (bubble_once L)"
text{*main function *}
fun bubble_main where
"bubble_main L = bubble_main (length L) L"
text{*-----prove by induction-----*}
lemma "is_sorted (bubble_main L)"
apply (induction L)
apply auto
quickcheck
oops
答案 0 :(得分:3)
首先,我会修复你的定义。例如,使用您的版本
is_sorted
在某种意义上来说太严格了,[0,0]没有排序。这个
也可通过快速检查来检测。
fun is_sorted :: "nat list ⇒ bool" where
"is_sorted (x1 # x2 # xs) = (x1 <= x2 ∧ is_sorted (x2 # xs))" |
"is_sorted x = True"
bubble_all
必须递归调用自己。
fun bubble_all where
"bubble_all 0 L = L"|
"bubble_all (Suc n) L = bubble_all n (bubble_once L)"
并且bubble_main
必须调用bubble_all
。
fun bubble_main where
"bubble_main L = bubble_all (length L) L"
然后需要几个辅助引理来证明结果。
我在此处列出了一些,其他一些在sorry
中可见。
lemma length_bubble_once[simp]: "length (bubble_once L) = length L"
by (induct rule: bubble_once.induct, auto)
lemma is_sorted_last: assumes "⋀ x. x ∈ set xs ⟹ x ≤ y"
and "is_sorted xs"
shows "is_sorted (xs @ [y])" sorry
当然,主要算法是bubble_all
,所以你应该证明
bubble_all
的属性,而不是bubble_main
的属性。
此外,对列表长度(或迭代次数)的归纳
这里是有利的,因为在递归调用中列表被bubble_all
更改。
lemma bubble_all_sorted: "n ≥ length L ⟹ is_sorted (bubble_all n L)"
proof (induct n arbitrary: L)
case (0 L) thus ?case by auto
next
case (Suc n L)
show ?case
proof (cases "L = []")
case True
from Suc(1)[of L] True
show ?thesis by auto
next
case False
let ?BL = "bubble_once L"
from False have "length ?BL ≠ 0" by auto
hence "?BL ≠ []" by (cases "?BL", auto)
hence "?BL = butlast ?BL @ [last ?BL]" by auto
then obtain xs x where BL: "?BL = xs @ [x]" ..
from BL have x_large: "⋀ y. y ∈ set xs ⟹ y ≤ x" sorry
from Suc(2) have "length ?BL ≤ Suc n" by auto
with BL have "length xs ≤ n" by auto
from Suc(1)[OF this] have sorted: "is_sorted (bubble_all n xs)" .
from x_large have id: "bubble_all n (xs @ [x]) = bubble_all n xs @ [x]" sorry
show ?thesis unfolding bubble_all.simps BL id
proof (rule is_sorted_last[OF x_large sorted])
fix x
assume "x ∈ set (bubble_all n xs)"
thus "x ∈ set xs" sorry
qed
qed
qed
然后很容易实现最终定理。
lemma "is_sorted (bubble_main L)"
using bubble_all_sorted by simp
我希望,这有助于看到所需的方向。