我有一个算法,我发现它的运行时复杂性遵循以下公式:
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2
日志的基础是2。
如何根据此公式计算Θ/Ο算法复杂度?
答案 0 :(得分:2)
对于上限你可以推理similat log(n!)= O(nlog(n))
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2 < [log(n)]^2 + ... + [log(n)]^2
= n[log(n)]^2
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2 = O( n[log(n)]^2 )
为了证明下限,需要证明给定的和是&gt; = n [log(n)] ^ 2的常数倍
从总和
中删除前半部分的术语[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2 >= [log(n/2)]^2 + [log(n/2 + 1)]^2 + [log(3)]^2 + ....... + [log(n)]^2
用log(n / 2)^ 2替换每个术语
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2 >= (n/2) * [log(n/2)]^2
下限= (n/2) * [log(n) - 1] ^ 2
我们可以证明log(n) - 1 >= (1/2) * log(n)
因此下限= (n/8) * [log(n)] ^ 2
和上限= n * [log(n)] ^ 2
所以Θ([log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2) = n * [log(n)] ^ 2