数组和链表类的大theta表示法

时间:2013-08-04 20:08:04

标签: java algorithm big-o

我正在尝试为我的类中的每个方法和构造函数确定复杂度指标(Big-theta表示法),这些方法和构造函数使用数组和链接列表作为底层结构创建队列。具体来说,我不确定如何查看并快速确定每个方法或构造函数是O(k)还是O(n)。有人可以解释一下吗?

数组类:

public class UnboundedQueueArray<T> implements UnboundedQueue<T> {

  // elements stored in array
  private T[] elements;
  // the number of elements currently in the queue
  private int numElems;

  // initial length of queue
  private static final int INITIAL_LENGTH = 10;

  /**
   * Constructs the UnboundedQueueArray object.
   */
  @SuppressWarnings("unchecked")
  public UnboundedQueueArray() {
    elements = (T[]) new Object[INITIAL_LENGTH];

    numElems = 0;
  }

  /**
   * This method inserts the specified element, unless the
   * queue is full.
   * 
   * @param o The element to be inserted.
   */
  public void insert(T o) {
    // checks and enlarges capacity if necessary
    ensureExtraCapacity(1);

    elements[numElems] = o;
    numElems++;
  }

  // this helper method ensures there is always extra capacity
  // in the queue to insert elements 
  @SuppressWarnings("unchecked")
  private void ensureExtraCapacity(int extraCapacity) {

    if(numElems + extraCapacity > elements.length) {
      // double old capacity
      int newCapacity = elements.length * 2 + extraCapacity;
      // allocate new array
      T[] newElements = (T[]) new Object[newCapacity];
      // copy contents of old array into new array
      for(int i = 0; i < length(); i++) {
        newElements[i] = elements[i];
      }

      // replace old array with new array
      elements = newElements;
    }

  }

  /**
   * This method returns the element at the front of the
   * queue, unless the queue is empty.
   *
   * @return The element at the front of the queue. 
   * @throws EmptyQueueException If the queue is empty.
   */
  public T front() throws EmptyQueueException {
    if(length() == 0) {
      throw new EmptyQueueException("Queue is empty.");
    }

    return elements[0];
  }

  /**
   * This method retrieves and removes the element at the front
   * of the queue, unless the queue is empty.
   * 
   * @return The element at the front of the queue.
   * @throws EmptyQueueException If the queue is empty.
   */
  public T remove() throws EmptyQueueException {
    if(length() == 0) {
      throw new EmptyQueueException("Queue is empty.");
    }

    // retrieve element at front of queue
    T frontElem = elements[0];

    // shift elements to the left
    for(int i = 1; i < length(); i++) {
      elements[i - 1] = elements[i];
    }

    // "null out" last element
    elements[numElems - 1] = null;
    // decrement number of elements
    numElems--;

    return frontElem;
  }

  /**
   * This method reports whether or not the queue contains
   * element(s).
   * 
   * @return If one or more elements exists or not.
   */
  public boolean hasMember() {
    return (length() > 0);
  }

  /**
   * This method returns the current length of the queue.
   * 
   * @return The length of the queue.
   */
  public int length() {
    return numElems;
  }

  /**
   * This method provides a string representation of the queue.
   * 
   * @return The String representation of the queue.
   */
  public String toString() {
    // for empty queue
    if(length() == 0) {
      String str = "[ " + length() + " : ]";
      return str;
    }

    // fencepost algorithm
    String str = "[ " + length() + " : " + elements[0];

    for(int i = 1; i < length(); i++) {
      str += ", " + elements[i];
    }

    str += " ]";

    return str;

  }

}

链接列表类:

public class UnboundedQueueLinkedList<T> implements UnboundedQueue<T> {

  // the reference to the first link
  private Link first;
  // the reference to the last link (if it exists)
  private Link last;

  // the number of links in the queue
  private int numLinks;

  // initial length of queue
  private static final int INITIAL_LENGTH = 10;

  /**
   * Constructs the UnboundedQueueLinkedList object.
   */
  @SuppressWarnings("unchecked")
  public UnboundedQueueLinkedList() {
    first = null;
    last = null;

    numLinks = 0;
  }

  /**
   * This method inserts the specified element, unless the
   * queue is full.
   * 
   * @param o The element to be inserted.
   */
  public void insert(T o) {

    Link newLink = new Link(o, null);

    if(first == null) {
      // we are adding the first link
      first = newLink;
    } else {  // there are existing links, so add newLink after old last link
      last.next = newLink;
    }

    // update the last link
    last = newLink;

    // increment the number of links in the queue
    numLinks++;

  }

  /**
   * This method returns the element at the front of the
   * queue, unless the queue is empty.
   *
   * @return The element at the front of the queue. 
   * @throws EmptyQueueException If the queue is empty.
   */
  @SuppressWarnings("unchecked")
  public T front() throws EmptyQueueException {
    if(length() == 0) {
      throw new EmptyQueueException("Queue is empty.");
    }

    T frontElem;
    // get link at front of queue
    Link frontLink = getLinkAtPos(0);
    frontElem = (T) frontLink.item;

    return frontElem;
  }

  // this helper method gets the link at the specified position
  private Link getLinkAtPos(int pos) {
    Link p = first;

    for(int i = 0; i < pos; i++) {
      p = p.next;
    }

    return p;
  }

  /**
   * This method retrieves and removes the element at the front
   * of the queue, unless the queue is empty.
   * 
   * @return The element at the front of the queue.
   * @throws EmptyQueueException If the queue is empty.
   */
  @SuppressWarnings("unchecked")
  public T remove() throws EmptyQueueException {
    if(length() == 0) {
      throw new EmptyQueueException("Queue is empty.");
    }

    T removedElem;
    removedElem = (T) first.item;
    // remove "first" link
    first = first.next;

    // update "last" if necessary
    if(first == null) {
      last = null;
    }

    // decrement the number of links in the queue
    numLinks--;

    return removedElem;
  }

  /**
   * This method reports whether or not the queue contains
   * element(s).
   * 
   * @return If one or more elements exists or not.
   */
  public boolean hasMember() {
    return (length() > 0);
  }

  /**
   * This method returns the current length of the queue.
   * 
   * @return The length of the queue.
   */
  public int length() {
    return numLinks;
  }

  /**
   * This method provides a string representation of the queue.
   * 
   * @return The String representation of the queue.
   */
  public String toString() {
    // for empty queue
    if(length() == 0) {
      String str = "[ " + length() + " : ]";

      return str;
    }

    Link p = first;
    String str = "[ " + length() + " : " + p.item;

    for(int i = 1; i < numLinks; i++) {
      p = p.next;
      str += ", " + p.item;
    }

    str += " ]";

    return str; 
  }

  // this helper class creates the links that structure the list
  class Link<T> {

    // data associated with this link
    public Object item;
    // next link, or null if no next link
    public Link next;

    /**
     * Constructs the Link object.
     * 
     * @param item The data to be associated with this Link object.
     * @param next The next link (or null if no next link exists).
     */
    public Link(Object item, Link next) {
      this.item = item;
      this.next = next;
    }

  }

}

编辑:这是堆栈数组类:

public class UnboundedStackArray<T> implements UnboundedStack<T> {

  // elements stored in array
  private T[] elements;
  // the number of elements currently in the stack
  private int numElems;
  // initial depth of stack
  private static final int INITIAL_DEPTH = 10;

  /**
   * Constructs the UnboundedStackArray object.
   */
  @SuppressWarnings("unchecked")
  public UnboundedStackArray() {
    elements = (T[]) new Object[INITIAL_DEPTH];

    numElems = 0;
  }

  /**
   * This method "pushes" an element onto the top of the stack.
   * 
   * @param o The element to be "pushed" (or added) onto the top
   *          of the stack.
   */
  public void push(T o) {
    // ensure space to add element
    ensureExtraCapacity(1);

    elements[numElems] = o;
    // increment the number of elements in the stack
    numElems++;
  }


  // this helper method ensures there is always extra capacity
  // in the stack to "push" (or add) elements onto top of stack
  @SuppressWarnings("unchecked")
  private void ensureExtraCapacity(int extraCapacity) {

    if(numElems + extraCapacity > elements.length) {
      // double old capacity
      int newCapacity = elements.length * 2 + extraCapacity;
      // allocate new array
      T[] newElements = (T[]) new Object[newCapacity];
      // copy contents of old array into new array
      for(int i = 0; i < depth(); i++) {
        newElements[i] = elements[i];
      }

      // replace old array with new array
      elements = newElements;
    }

  }

  /**
   * This method retrieves the element at the top of the stack,
   * unless the stack is empty.
   * 
   * @return The element at the top of the stack.
   * @throws EmptyStackException If the stack is empty.
   */
  public T top() throws EmptyStackException {
    if(depth() == 0) {
      throw new EmptyStackException("Stack is empty");
    }

    return elements[numElems - 1];
  }

  /**
   * This method retrieves and removes the element at the top of
   * the stack, unless the stack is empty.
   * 
   * @return The element at the top of the stack.
   * @throws EmptyStackException If the stack is empty.
   */
  public T pop() throws EmptyStackException {
    if(depth() == 0) {
      throw new EmptyStackException("Stack is empty");
    }

    // retrieve element at top of stack
    T topElem = elements[numElems - 1];
    // "null out" element at top of stack
    elements[numElems - 1] = null;
    // decrement number of elements
    numElems--;

    return topElem;
  }

  /**
   * This method reports whether or not the stack contains
   * element(s).
   * 
   * @return If one or more elements exists or not.
   */
  public boolean hasMember() {
    return (depth() > 0);
  }

  /**
   * This method returns the current depth (or length) of the stack.
   * 
   * @return The depth of the stack.
   */
  public int depth() {
    return numElems;
  }

  /**
   * This method provides a string representation of the stack.
   * 
   * @return The String representation of the stack.
   */
  public String toString() {
    // for empty stack
    if(depth() == 0) {
      String str = "[ " + depth() + " : ]";
      return str;
    }

    String str = "[ " + depth() + " : " + elements[numElems - 1];

    for(int i = numElems - 2; i >= 0; i--) {
      str += ", " + elements[i];
    }

    str += " ]";

    return str;

  }

}

这是堆栈链表类:

public class UnboundedStackLinkedList<T> implements UnboundedStack<T> {

  // the reference to the first link
  private Link first;
  // the reference to the last link (if it exists)
  private Link last;

  // the number of links in the stack
  private int numLinks;

  // initial length of stack
  private static final int INITIAL_LENGTH = 10;

  /**
   * Constructs the UnboundedStackLinkedList object.
   */
  @SuppressWarnings("unchecked")
  public UnboundedStackLinkedList() {
    first = null;
    last = null;

    numLinks = 0;
  }

  /**
   * This method "pushes" an element onto the top of the stack.
   * 
   * @param o The element to be "pushed" (or added) onto the top
   *          of the stack.
   */
  public void push(T o) {
    Link newLink = new Link(o, null);

    if(first == null) {
      // add the first link
      first = newLink;
    } else {  // there are existing links, so add newLink after old last link
      last.next = newLink;
    }

    // update the last link
    last = newLink;

    // increment the number of links in the queue
    numLinks++;
  }

  /**
   * This method retrieves the element at the top of the stack,
   * unless the stack is empty.
   * 
   * @return The element at the top of the stack.
   * @throws EmptyStackException If the stack is empty.
   */
  @SuppressWarnings("unchecked")
  public T top() throws EmptyStackException {
    if(depth() == 0) {
      throw new EmptyStackException("Stack is empty.");
    }

    T topElem;
    // get link at front of queue
    Link topLink = getLinkAtPos(numLinks - 1);
    topElem = (T) topLink.item;

    return topElem;
  }

  // this helper method gets the link at the specified position
  private Link getLinkAtPos(int pos) {
    Link p = first;

    for(int i = 0; i < pos; i++) {
      p = p.next;
    }

    return p;
  }

  /**
   * This method retrieves and removes the element at the top of
   * the stack, unless the stack is empty.
   * 
   * @return The element at the top of the stack.
   * @throws EmptyStackException If the stack is empty.
   */
  @SuppressWarnings("unchecked")
  public T pop() throws EmptyStackException {
    if(depth() == 0) {
      throw new EmptyStackException("Stack is empty.");
    }

    T removedElem;
    removedElem = (T) last.item;

    Link p = first;
    for(int i = 0; i < depth() - 2; i++) {
      p = p.next;
    }

    //p.next = null;

    last = p;

    // update "last" if necessary
    if(first == null) {
      last = null;
    }

    // decrement the number of links in the queue
    numLinks--;

    return removedElem;
  }

  /**
   * This method reports whether or not the stack contains
   * element(s).
   * 
   * @return If one or more elements exists or not.
   */
  public boolean hasMember() {
    return (depth() > 0);
  }

  /**
   * This method returns the current depth (or length) of the stack.
   * 
   * @return The depth of the stack.
   */
  public int depth() {
    return numLinks;
  }

  /**
   * This method provides a string representation of the stack.
   * 
   * @return The String representation of the stack.
   */
  @SuppressWarnings("unchecked")
  public String toString() {
    // for empty stack
    if(depth() == 0) {
      String str = "[ " + depth() + " : ]";
      return str;
    }

    Link pL = last;
    String str = "[ " + depth() + " : " + pL.item;

    for(int i = numLinks - 2; i >= 0; i--) {
      Link tempLink = getLinkAtPos(i);
      str += ", " + tempLink.item;
    }

    str += " ]";

    return str; 
  }

  // this helper class creates the links that structure the list
  class Link<T> {

    /**
     * Data associated with this link.
     */
    public Object item;

    /**
     * Next link, or null if no next link.
     */
    public Link next;

    /**
     * Constructs the Link object.
     * 
     * @param item The data to be associated with this Link object.
     * @param next The next link (or null if no next link exists).
     */
    public Link(Object item, Link next) {
      this.item = item;
      this.next = next;
    }

  }

}

3 个答案:

答案 0 :(得分:2)

数组类:

UnboundedQueueArray:O(1)
插入:O(1)
ensureExtraCapacity:O(n)(n =当前长度)

“O(n)是最坏情况,否则为O(1)”

前面:O(1)
删除:O(n)

“总是O(n)”

长度:O(1)

Optimalization:

我强烈建议您使用堆栈来处理此行为,因为它会处理每个方法的复杂度为O(1)。

链接列表:

UnboundedQueueLinkedList:O(1)
插入:O(1)
行为似乎不正确

last.next = newLink;
last = newLink;

getLinkAtPos:O(pos)
删除:O(1)
长度:O(1)

可以做一些优化。

UnboundedQueueLinkedList.getLinkAtPos
如果你把它作为一个双链表,那么你可以从pos > length() / 2开始。这将最坏情况复杂度降低到O(log(n))。

堆栈数组类:

UnboundedStackArray:O(1)
推:O(1)+ ensureExtraCapacity
ensureExtraCapacity:wcs是O(n),bcs是O(1)
顶部:O(1)
pop:O(1)
深度:O(1)
toString:O(n)

绝对不使用数组作为堆栈,列表效率更高

堆栈链表:

UnboundedStackLinkedList:O(1)
推:O(1)

同样,看起来功能不正确

top:O(1)+ getLinkAtPos
getLinkAtPos:O(n)
pop:O(n)
深度:O(1)
toString:O($ n ^ 2 $)

这可能会更有效率。

如果您创建堆栈,则只需跟踪top项。每次推送时,顶部项目都会被新项目替换,新项目的next链接项目将是旧项目。 每次弹出时,弹出顶部项目并将其引用设置为新顶部。唯一超过O(1)的方法是toString()方法。

答案 1 :(得分:1)

@ user2581779:我将尝试解释O(n)的含义,但我不会检查你的代码。希望您在自己阅读完答案后能够回答这个问题(和其他相关问题)。

为什么要使用Big-O表示法?

首先,你应该理解为什么使用O符号。例如,你可以在给定的计算机上使用几秒钟的执行时间,对吗?

嗯,这有很多问题:

  • 即使每个程序员/计算机科学家都有相同的计算机执行,时间也会有所不同(因为很多因素,例如温度)
  • 您必须非常仔细地考虑您的测试用例。假设您要检查一种对数组中的元素进行排序的算法。你想要排序什么(数字/对象)?您想要排序多少个对象?这可能会影响您衡量的时间
  • 您只能获得已测试的具体架构/系统的声明。

好的,只是测量秒数不是一个好主意。但是你为什么不测量一些操作呢?

  • 操作次数可能难以确定(int a = 7 + 3有多少次操作?a += b有多少次?你必须考虑编译器优化以及底层汇编程序的外观)

理论上,当您增加输入大小时,您总是对算法的开发方式更感兴趣。

因此,假设您有一个n元素数组。您希望对这些元素进行排序。算法A需要n^2 + 1234个操作,算法B需要n^1.9 + 123123123123123个操作。哪一个更好? (请注意n只是一个变量。我也可以将其命名为kwhatever

很长一段时间,算法A的表现会更好。但是一旦B变得更好(有更多元素n),它将比A更好。

所以,你可以忘记添加常数术语。还有乘法常数。在实践中,乘法常数可能非常重要,但Big-O表示法会跳过这一点。

请注意,您关心最坏的情况。最好的案例同样容易检查,但不是很有趣。

平均案例分析难以正确完成。如果您想尝试,请搜索“accounting method”或“聚合方法”。

用于什么是Big-O表示法?

时空复杂性。对于大多数简单应用,只有时间复杂度很重要。但请注意,您经常可以进行时间/空间权衡。存储更多信息时,您的算法可能会更快。

Big-O表示法仅用于了解函数增长的强度。

数学

正式:

g : N -> R成为一个函数。

O(g(n)) &:= {f(n) | \exists_{c > 0} \exists_{n_0 > 0} \forall_{n \geq n_0}: f(n) < c *g(n) }

(有关渲染版本,请参阅my site

这意味着,如果说您的计划位于O(n)是正确的,那么说它在O(n^2)中也是正确的。 Big Theta符号使这更好,但更难以正确确定。

如何获得Big-O表示法?

对于大多数程序来说,它非常简单:

  • 首先,定义正在增长的值(例如,您要排序的元素数)。这是您的n
  • 然后看看循环。
    • n之上的一个循环意味着你处于O(n)之中(尽管可能会更糟)
    • 一个嵌套循环,其中两个变量从0..n循环表示您在O(n^2)或更差
  • 看看递归函数。用Master theorem检查它。
  • 查看您调用的数据结构和功能。对于许多Java数据结构,您可以通过搜索
  • 获得大O时间复杂度
  • 当树平衡时,树数据结构通常具有log(n)的内容,因为这是树的高度(但只有在你可以保证它是平衡的时候!)
  • 您可以通过分析总和来获得时间。因此,当你有两个嵌套循环时,一个来自0..n,其中运行变量i,另一个来自i..n,它执行一个“基本”操作,得到sum_{i=0}^n \sum_{j=i}^n 1 = sum_{i=0}^n i = (n^2 + n)/2 + 1。需要一些练习来确定哪些操作是1,哪些是n或不同的操作,但只要您以数学方式编写它们,就可以使用Wolfram | Alpha来简化他们。有关示例,请参阅我的article about Gaussian elimination

答案 2 :(得分:0)

  

具体来说,我不确定如何查看并快速确定每个方法或构造函数是O(k)还是O(n)。

首先,浏览代码并找到仅包含O(1)代码的所有方法。这些方法不会有循环运行n次,也不会调用O(n)方法。由于它们直接运行,它们是O(1),即使它们在循环之外调用许多其他O(1)方法。如果该方法循环通过O(0)代码n次,则该方法为0(n)。如果它有多个不在循环内的O(n)操作,它仍然是O(n),尽管可能具有更大的n系数。如果它具有执行n次的O(n)代码,则为O(n ^ 2)。

<强>阵列

UnboundedQueueArray()是O(INITIAL_LENGTH),它是O(1),因为INITIAL_LENGTH是常量。 ensureExtraCapacity(int extraCapacity)是O(n),只要它扩展内部数组,因为它declares an array of size newCapacity(必须大于n)并运行一个循环n次,但是是O(1否则。

插入是让事情变得有趣的地方。大约每n次被调用一次,它会将ensureExtraCapacity称为O(n)操作。如果你每n次调用O(n)一次,你平均为O(n / n),或O(1)。但由于你偶尔会有O(n),我们给它一个特殊的名称:摊销的常数时间。

front,hasMember,长度为O(1),由于循环,remove是O(n),而toString只是O(n),因为我们可以在恒定时间内访问元素。

<强>链表

UnboundedQueueLinkedList (the constructor), insert, front, remove, hasMember,length都是O(1)。 getLinkAtPos(int pos)可以说是O(pos),但我们只称它为O(n),因为最坏的情况随着n变大而变大。

toString()是O(n ^ 2),因为它执行O(n)操作,getLinkAtPos,n次。

备注:

如果你回到LinkedList的toString()的原始实现,你可以让它下到O(n),因为你避免在循环中调用getLinkAtPos。

public String toString() {
        // for empty queue
        if(length() == 0) {
          String str = "[ " + length() + " : ]";

          return str;
        }

        Link p = first;
        String str = "[ " + length() + " : " + p.item;

        for(int i = 1; i < numLinks; i++) {
          p = p.next;
          str += ", " + p.item;
        }

        str += " ]";

        return str; 
      }