我已经编写了一个算法来计算n x n
矩阵的行列式,基于拉普拉斯展开:
我得到了下面的递归关系:
T(n) = n(n² + T(n-1))
我在维基百科中读到这应该产生结果T(n) = O(n!)
,但我不知道如何证明(尽管它很直观)。
答案 0 :(得分:4)
公式是正确的,但您的递归关系不是。您不需要n²
,因为您不必保存或生成子矩阵。
Mij
是(n-1) x (n-1)
子矩阵的决定因素。因此,您必须计算n
个不同矩阵的n
个决定因素。所以正确的递归关系是T(n) = n⋅T(n-1) + 2n-1
。这简化为
T(n) = n ⋅ T(n-1) + 2n-1
= n ⋅ (n-1) ⋅ T(n-2) + n ⋅ (n-1)
= n ⋅ ( (n-1) ⋅ ( (n-2) ⋅ (...) + n-3 ) + n-2 ) + n-1
= 2n-1 + n ⋅ (2(n-1)-1) + n ⋅ (n-1) ⋅ (2(n-2)-1) + ... + n!
< 2 ⋅ n + 2 ⋅ n ⋅ (n-1) + 2 ⋅ n ⋅ (n-1) ⋅ (n-2) + ... + 2 ⋅ n! + n!
= 2 ⋅ (n + n ⋅ (n-1) + ... + n!/2) + 3 ⋅ n!
< 2 ⋅ (n!/(n-1)! + n!/(n-2)! + ... + n!/2!) + 3 ⋅ n!
由于所有2⋅n!/k! ≤ n!/(k-1)!
k ≥ 2
,我们得到
n!/(n-1)! + n!/(n-2)! + n!/(n-3)! + ... + n!/2!
≤ n!/(n-2)! + n!/(n-2)! + n!/(n-3)! + ... + n!/2!
≤ n!/(n-3)! + n!/(n-3)! + ... + n!/2!
≤ n!/(n-4)! + ... + n!/2!
≤ ...
≤ n!/2! + n!/2!
≤ n!
所以
T(n) = n ⋅ T(n-1) + 2n-1
< 2 ⋅ (n!/(n-1)! + n!/(n-2)! + ... + n!/2!) + 3 ⋅ n!
≤ 2 ⋅ n! + 3 ⋅ n!
= 5 ⋅ n!
= O(n!)
因此,您的算法在O(n!)