我正在尝试使用clisp Lambda Calc实现Division功能。式
我从this网站上读到了一个分区的lambda表达式:
Y(λgqab.LTa b(PAIR q a)(g(SUCC q)(SUB a b)b))0
这些是TRUE和FALSE
(defvar TRUE #'(lambda(x)#'(lambda(y)x)))
(defvar FALSE #'(lambda(x)#'(lambda(y)y)))
这些是Int和教会号码之间的转换函数
(defun church2int(numchurch)
(funcall (funcall numchurch #'(lambda (x) (+ x 1))) 0)
)
(defun int2church(n)
(cond
((= n 0) #'(lambda(f) #'(lambda(x)x)))
(t #'(lambda(f) #'(lambda(x) (funcall f
(funcall(funcall(int2church (- n 1))f)x))))))
)
这是我的IF-THEN-ELSE实施
(defvar IF-THEN-ELSE
#'(lambda(c)
#'(lambda(x)
#'(lambda(y)
#'(lambda(acc1)
#'(lambda (acc2)
(funcall (funcall (funcall (funcall c x) y) acc1) acc2))))))
)
这是我的div实现
(defvar division
#'(lambda (g)
#'(lambda (q)
#'(lambda (a)
#'(lambda (b)
(funcall (funcall (funcall (funcall (funcall IF-THEN-ELSE LT) a) b)
(funcall (funcall PAIR q)a))
(funcall (funcall g (funcall succ q)) (funcall (funcall sub a)b))
)))))
)
PAIR,SUCC和SUB功能正常。我把教堂的数字设置得像这样
(set six (int2church 6))
(set two (int2church 2))
然后我这样做:
(setq D (funcall (funcall division six) two))
我得到了:
#<FUNCTION :LAMBDA (A)
#'(LAMBDA (B)
(FUNCALL (FUNCALL (FUNCALL (FUNCALL (FUNCALL IF-THEN-ELSE LT) A) B) (FUNCALL (FUNCALL PAR Q) A))
(FUNCALL (FUNCALL G (FUNCALL SUCC Q)) (FUNCALL (FUNCALL SUB A) B))))>
根据我的理解,这个函数返回一个教会对。如果我试图获得第一个元素 功能FRST(FRST工作正常)如下:
(funcall frst D)
我有
#<FUNCTION :LAMBDA (B)
(FUNCALL (FUNCALL (FUNCALL (FUNCALL (FUNCALL IF-THEN-ELSE LT) A) B) (FUNCALL (FUNCALL PAR Q) A))
(FUNCALL (FUNCALL G (FUNCALL SUCC Q)) (FUNCALL (FUNCALL SUB A) B)))>
如果我尝试使用Church2int获取int值(Church2int正常工作),请执行以下操作:
(church2int (funcall frst D))
我有
*** - +:
#<FUNCTION :LAMBDA (N)
#'(LAMBDA (F)
#'(LAMBDA (X)
(FUNCALL (FUNCALL (FUNCALL N #'(LAMBDA (G) #'(LAMBDA (H) (FUNCALL H (FUNCALL G F))))) #'(LAMBDA (U) X)) (LAMBDA (U) U))))>
is not a number
我希望得到3
我认为问题出在DIVISION函数中,在IF-THEN-ELSE之后,我试图稍微改变它(我认为这是一个嵌套的括号问题)但是我遇到了很多错误。
任何帮助将不胜感激
由于
答案 0 :(得分:1)
您的定义存在一些问题。
DIVISION
不使用 Y 组合子,但原始定义的确如此。
这很重要,因为DIVISION
函数需要g
中的自身副本
参数。
但是,即使您添加了 Y 调用,您的代码仍然无效 但是进入一个无限循环。这是因为Common Lisp与今天的大多数语言一样,是一种按值调用的语言。在调用函数之前评估所有参数。这意味着您不能像传统的lambda演算语义那样优雅地定义条件函数。
这是在Common Lisp中进行教会号码划分的一种方法。我冒昧地引入了一些语法来使它更具可读性。
;;;; -*- coding: utf-8 -*-
;;;; --- preamble, define lambda calculus language
(cl:in-package #:cl-user)
(defpackage #:lambda-calc
;; note: not using common-lisp package
(:use)
(:export #:λ #:call #:define))
;; (lambda-calc:λ (x y) body)
;; ==> (cl:lambda (x) (cl:lambda (y) body))
(defmacro lambda-calc:λ ((arg &rest more-args) body-expr)
(labels ((rec (args)
(if (null args)
body-expr
`(lambda (,(car args))
(declare (ignorable ,(car args)))
,(rec (cdr args))))))
(rec (cons arg more-args))))
;; (lambda-calc:call f a b)
;; ==> (cl:funcall (cl:funcall f a) b)
(defmacro lambda-calc:call (func &rest args)
(labels ((rec (args)
(if (null args)
func
`(funcall ,(rec (cdr args)) ,(car args)))))
(rec (reverse args))))
;; Defines top-level lexical variables
(defmacro lambda-calc:define (name value)
(let ((vname (gensym (princ-to-string name))))
`(progn
(defparameter ,vname nil)
(define-symbol-macro ,name ,vname)
(setf ,name
(flet ((,vname () ,value))
(,vname))))))
;; Syntax: {f a b}
;; ==> (lambda-calc:call f a b)
;; ==> (cl:funcall (cl:funcall f a) b)
(eval-when (:compile-toplevel :load-toplevel :execute)
(set-macro-character #\{
(lambda (stream char)
(declare (ignore char))
`(lambda-calc:call
,@(read-delimited-list #\} stream t))))
(set-macro-character #\} (get-macro-character #\))))
;;;; --- end of preamble, fun starts here
(in-package #:lambda-calc)
;; booleans
(define TRUE
(λ (x y) x))
(define FALSE
(λ (x y) y))
(define NOT
(λ (bool) {bool FALSE TRUE}))
;; numbers
(define ZERO
(λ (f x) x))
(define SUCC
(λ (n f x) {f {n f x}}))
(define PLUS
(λ (m n) {m SUCC n}))
(define PRED
(λ (n f x)
{n (λ (g h) {h {g f}})
(λ (u) x)
(λ (u) u)}))
(define SUB
(λ (m n) {n PRED m}))
(define ISZERO
(λ (n) {n (λ (x) FALSE) TRUE}))
(define <=
(λ (m n) {ISZERO {SUB m n}}))
(define <
(λ (m n) {NOT {<= n m}}))
(define ONE {SUCC ZERO})
(define TWO {SUCC ONE})
(define THREE {SUCC TWO})
(define FOUR {SUCC THREE})
(define FIVE {SUCC FOUR})
(define SIX {SUCC FIVE})
(define SEVEN {SUCC SIX})
(define EIGHT {SUCC SEVEN})
(define NINE {SUCC EIGHT})
(define TEN {SUCC NINE})
;; combinators
(define Y
(λ (f)
{(λ (rec arg) {f {rec rec} arg})
(λ (rec arg) {f {rec rec} arg})}))
(define IF
(λ (condition if-true if-false)
{{condition if-true if-false} condition}))
;; pairs
(define PAIR
(λ (x y select) {select x y}))
(define FIRST
(λ (pair) {pair TRUE}))
(define SECOND
(λ (pair) {pair FALSE}))
;; conversion from/to lisp integers
(cl:defun int-to-church (number)
(cl:if (cl:zerop number)
zero
{succ (int-to-church (cl:1- number))}))
(cl:defun church-to-int (church-number)
{church-number #'cl:1+ 0})
;; what we're all here for
(define DIVISION
{Y (λ (recurse q a b)
{IF {< a b}
(λ (c) {PAIR q a})
(λ (c) {recurse {SUCC q} {SUB a b} b})})
ZERO})
如果将其放入文件中,您可以执行以下操作:
[1]> (load "lambdacalc.lisp")
;; Loading file lambdacalc.lisp ...
;; Loaded file lambdacalc.lisp
T
[2]> (in-package :lambda-calc)
#<PACKAGE LAMBDA-CALC>
LAMBDA-CALC[3]> (church-to-int {FIRST {DIVISION TEN FIVE}})
2
LAMBDA-CALC[4]> (church-to-int {SECOND {DIVISION TEN FIVE}})
0
LAMBDA-CALC[5]> (church-to-int {FIRST {DIVISION TEN FOUR}})
2
LAMBDA-CALC[6]> (church-to-int {SECOND {DIVISION TEN FOUR}})
2