我的作业涉及Big O分析,我想我已经掌握了它,但我不是百分百肯定。你们中的任何一个人都会介意看看我是否走在正确的轨道上吗?
作业如下。对于问题1和3,我的分析和答案在右侧,在//标记之后。对于问题2,我的分析和答案低于算法类型。
提前感谢您的帮助! : - )
1.For each of the following program fragments, give a Big-Oh analysis of the running time in terms of N:
(a) // Fragment (a)
for ( int i = 0, Sum = 0; i < N; i++ ) // N operations
for( int j = 0; j < N; j++ ) // N operations
Sum++; // Total: N^2 operations => O(N^2)
(b) // Fragment (b)
for( int i = 0, Sum = 0; i < N * N; i++ ) // N^2 operations
for( int j = 0; j < N; j ++ ) // N operations
Sum++; // Total: N^3 operations => O(N^3)
(c) // Fragment (c)
for( int i = 0, Sum = 0; i < N; i++ ) // N operations
for( int j = 0; j < i; j ++ ) // N-1 operations
Sum++; // Total: N(N-1) = N^2 – N operations => O(N^2)
(d) // Fragment (d)
for( int i = 0, Sum = 0; i < N; i++ ) // N operations
for( int j = 0; j < N * N; j++ ) // N^2 operations
for( int k = 0; k < j; k++ ) // N^2 operations
Sum++; // Total: N^5 operations => O(N^5)
2. An algorithm takes 0.5 milliseconds for input size 100. How long will it take for input size 500 if the running time is:
a. Linear
0.5 *5 = 2.5 milliseconds
b. O( N log N)
O (N log N) – treat the first N as a constant, so O (N log N) = O (log N)
Input size 100 = (log 100) + 1 = 2 + 1 = 3 operations
Input size 500 = (log 500) + 1= 2.7 + 1 = 3.7 ≈ 4 operations
Input size 100 runs in 0.5 milliseconds, so input size 500 takes 0.5 * (4/3) ≈ 0.67 milliseconds
c. Quadratic
Input size 100 in quadratic runs 100^2 operations = 10,000 operations
Input size 500 in quadratic runs 500^2 operations = 250,000 operations = 25 times as many
Input size of 100 runs in 0.5 milliseconds, so input size of 500 takes 25 * 0.5 = 12.5 milliseconds
d. Cubic
Input size 100 in quadratic runs 100^3 operations = 1,000,000 operations
Input size 500 in quadratic runs 500^3 operations = 125,000,000 operations = 125 times as many
Input size of 100 runs in 0.5 milliseconds, so input size of 500 takes 125 * 0.5 = 62.5 milliseconds
3. Find the Big-O for the following:
(a) f(x) = 2x^3 + x^2 log x // O(x^3)
(b) f(x) = (x^4 – 34x^3 + x^2 -20) // O(x^4)
(c) f(x) = x^3 – 1/log(x) // O(x^3)
4. Order the following functions by growth rate: (1 is slowest growth rate; 11 is fastest growth rate)
__6_ (a) N
__5_ (b) √N
__7_ (c) N^1.5
__9_ (d) N^2
__4_ (e) N log N
__2_ (f) 2/N
_11_ (g) 2^N
__3_ (h) 37
_10_ (i) N^3
__1_ (j) 1/ N^2
__8_ (k) N^2 /log N
* My logic in putting (j) and (f) as the slowest is that as N grows, 1/N^2 and 2/N decrease, so their growth rates are negative and therefore slower than the rest which have positive growth rates (or a 0 growth rate in the case of 37 (h)). Is that correct?
答案 0 :(得分:2)
我看了你的问题1到3,它看起来没问题。
请遵循以下规则并自行检查:
1)可以省略乘法常数, 示例50n ^ 2简化为n ^ 2
2)如果a> b,则n ^ a支配n ^ b 示例n ^ 3支配n ^ 2,因此n ^ 3 + n ^ 2 + n,简化为n3
3)任何指数都支配任何多项式 示例3 ^ n支配n ^ 5 实施例2 ^ n支配n ^ 2 + 5n + 100
4)任何多项式都支配任何对数 示例n支配(log n)3
问题4使用以下作为指导(从最小到最大):
Log2 n&lt; n&lt; n log2 n&lt; n ^ 2&lt; n ^ 3&lt; 2 ^ n
答案 1 :(得分:1)
时间计算(b)的答案是错误的。你不能假设其中一个为常数。因此nlogn变为1log1,这意味着log1为0.所以0。
所以答案是100 log100操作与500log500相比......
最小到最大。 b是4,a是5.c,e,k是位置6和7和8的竞争。 您给出的1,2,3个位置是正确的.9,10,11是正确的。
我将检查6,7,8的一些分析并让你知道..
如果您需要澄清我的答案,您可以对此发表评论..
答案 2 :(得分:1)
@op你能告诉我为什么你认为O(nlgn)= O(lg n)?据我所知,您对Q2的分析b部分实际上是对O(lg n)算法的分析,为了分析nlgn算法,你需要考虑左边的那个n。
答案 3 :(得分:1)
(a)正确的
(b)正确的
(c)纠正。 0 + 1 + 2 + ... +(n - 1)= n(n - 1)/ 2 = 0.5n ^ 2 - 0.5n = O(n ^ 2)
(d)正确(在(c)中有1/2,但复杂性仍为O(N ^ 5))
一个。正确
湾让K为一步的持续时间
K *(100log 100)= 0.5,因此K = 7.5×10 ^ -4
K *(500 log 500)= 7.5 * 1 - ^ - 4 * 500 log 500 = 3.3737ms
或者,(500log 500)/(100log 100)= 6.7474
当n = 500时,它将慢6.7474倍,6.7474 * 0.5ms = 3.3737ms
℃。正确
d。正确
(a)正确的 (b)正确的 (c)正确
__ 5 _(a)N
__ 4 _(b)√N
__7_(c)N ^ 1.5
__9_(d)N ^ 2
__ 6 _(e)N log N
__2_(f)2 / N
_11_(g)2 ^ N
__3_(h)37
_10_(i)N ^ 3
__1_(j)1 / N ^ 2
__8_(k)N ^ 2 / log N
我同意(f)和(j)的定位。但是,你应该意识到它们不会出现在“野外”,因为每个算法都至少有一个步骤,因此无法击败O(1)。有关更详细的说明,请参阅Are there any O(1/n) algorithms?。