我需要对2D中的2个线段交叉进行精确且数值稳定的测试。检测4个位置有一种可能的解决方案,请参见下面的代码。
getInters ( double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, double & x_int, double & y_int )
{
3: Intersect in two end points,
2: Intersect in one end point,
1: Intersect (but not in end points)
0: Do not intersect
unsigned short code = 2;
//Initialize intersections
x_int = 0, y_int = 0;
//Compute denominator
double denom = x1 * ( y4 - y3 ) + x2 * ( y3 - y4 ) + x4 * ( y2 - y1 ) + x3 * ( y1 - y2 ) ;
//Segments are parallel
if ( fabs ( denom ) < eps)
{
//Will be solved later
}
//Compute numerators
double numer1 = x1 * ( y4 - y3 ) + x3 * ( y1 - y4 ) + x4 * ( y3 - y1 );
double numer2 = - ( x1 * ( y3 - y2 ) + x2 * ( y1 - y3 ) + x3 * ( y2 - y1 ) );
//Compute parameters s,t
double s = numer1 / denom;
double t = numer2 / denom;
//Both segments intersect in 2 end points: numerically more accurate than using s, t
if ( ( fabs (numer1) < eps) && ( fabs (numer2) < eps) ||
( fabs (numer1) < eps) && ( fabs (numer2 - denom) < eps) ||
( fabs (numer1 - denom) < eps) && ( fabs (numer2) < eps) ||
( fabs (numer1 - denom) < eps) && ( fabs (numer2 - denom) < eps) )
{
code = 3;
}
//Segments do not intersect: do not compute any intersection
else if ( ( s < 0.0 ) || ( s > 1 ) ||
( t < 0.0 ) || ( t > 1 ) )
{
return 0;
}
//Segments intersect, but not in end points
else if ( ( s > 0 ) && ( s < 1 ) && ( t > 0 ) && ( t < 1 ) )
{
code = 1;
}
//Compute intersection
x_int = x1 + s * ( x2 - x1 );
y_int = y1 + s * ( y2 - y1 );
//Segments intersect in one end point
return code;
}
我不确定是否所有建议的条件都设计得恰当(以避免圆度误差)。
使用参数s,t进行测试或仅用于计算交叉点是否有意义?
我担心可能无法正确检测到位置2(在一个终点处相交的段)(没有任何条件的最后剩余情况)......
答案 0 :(得分:4)
这似乎是一个非常常见的数学问题。有一个关于topcoder公式的好教程可以回答你的问题,很容易用你想要的任何编程语言实现基础:Line Intersection Tutorial
此致 伊芙吉尼娅
答案 1 :(得分:0)
if(fabs(denom) < eps){
if((fabs(len(x2, y2, x3, y3) + len(x2, y2, x4, y4) - len(x3, y3, x4, y4)) < eps) || (fabs(len(x1, y1, x3, y3) + len(x1, y1, x4, y4) - len(x3, y3, x4, y4)) < eps) || (fabs(len(x3, y3, x1, y1) + len(x3, y3, x2, y2) - len(x1, y1, x2, y2)) < eps) || (fabs(len(x4, y4, x1, y1) + len(x4, y4, x2, y2) - len(x1, y1, x2, y2)) < eps)){
return 1;
}else{
return 0;
}
}
len = sqrt(sqr(c - a) + sqr(d - b))