假设我有一个数据框,其中的行包含丢失的数据,但是有一组列用作键:
import pandas as pd
import numpy as np
data = {"id": [1, 1, 2, 2, 3, 3, 4 ,4], "name": ["John", "John", "Paul", "Paul", "Ringo", "Ringo", "George", "George"], "height": [178, np.nan, 182, np.nan, 175, np.nan, 188, np.nan], "weight": [np.nan, np.NaN, np.nan, 72, np.nan, 68, np.nan, 70]}
df = pd.DataFrame.from_dict(data)
print(df)
id name height weight
0 1 John 178.0 NaN
1 1 John NaN NaN
2 2 Paul 182.0 NaN
3 2 Paul NaN 72.0
4 3 Ringo 175.0 NaN
5 3 Ringo NaN 68.0
6 4 George 188.0 NaN
7 4 George NaN 70.0
我将如何使用重复的键向下“挤压”这些行以选择非nan值(如果存在)?
desired output:
id name height weight
0 1 John 178.0 NaN
2 2 Paul 182.0 72.0
4 3 Ringo 175.0 68.0
6 4 George 188.0 70.0
索引无关紧要,并且非NaN数据始终最多只有一行。我想我需要使用groupby(['id', 'name'])
,但是我不确定从那里去哪里。
答案 0 :(得分:2)
如果每个组始终只有一个非NaN
的值,则可以通过多种方式进行汇总:
df = df.groupby(['id', 'name'], as_index=False).first()
或者:
df = df.groupby(['id', 'name'], as_index=False).last()
或者:
df = df.groupby(['id', 'name'], as_index=False).mean()
或者:
df = df.groupby(['id', 'name'], as_index=False).sum(min_count=1)