我正在为类似MineCraft的世界开发地形生成算法。目前,我正在使用基于文件'Simplex Noise Demystified' [PDF]中的实现的单纯形噪声,因为单纯形噪声应该比Perlin噪声更快并且具有更少的伪像。这看起来相当不错(见图),但到目前为止它还很慢。
运行噪声功能10次(我需要不同波长的噪声,如地形高度,温度,树位置等),每个块(16x16x128块)的噪声为3个八度音程,或大约100万个总共调用噪声功能大约需要700-800 ms。尽管算法中没有明显昂贵的操作(至少对我而言),但这对于以任何体面的速度生成地形的目的而言至少是一个数量级太慢。只是楼层,模数,一些数组查找和基本算术。下面列出了算法(用Haskell编写)。 SCC评论用于分析。我省略了2D噪声函数,因为它们的工作方式相同。
g3 :: (Floating a, RealFrac a) => a
g3 = 1/6
{-# INLINE int #-}
int :: (Integral a, Num b) => a -> b
int = fromIntegral
grad3 :: (Floating a, RealFrac a) => V.Vector (a,a,a)
grad3 = V.fromList $ [(1,1,0),(-1, 1,0),(1,-1, 0),(-1,-1, 0),
(1,0,1),(-1, 0,1),(1, 0,-1),(-1, 0,-1),
(0,1,1),( 0,-1,1),(0, 1,-1),( 0,-1,-1)]
{-# INLINE dot3 #-}
dot3 :: Num a => (a, a, a) -> a -> a -> a -> a
dot3 (a,b,c) x y z = a * x + b * y + c * z
{-# INLINE fastFloor #-}
fastFloor :: RealFrac a => a -> Int
fastFloor x = truncate (if x > 0 then x else x - 1)
--Generate a random permutation for use in the noise functions
perm :: Int -> Permutation
perm seed = V.fromList . concat . replicate 2 . shuffle' [0..255] 256 $ mkStdGen seed
--Generate 3D noise between -0.5 and 0.5
simplex3D :: (Floating a, RealFrac a) => Permutation -> a -> a -> a -> a
simplex3D p x y z = {-# SCC "out" #-} 16 * (n gi0 (x0,y0,z0) + n gi1 xyz1 + n gi2 xyz2 + n gi3 xyz3) where
(i,j,k) = {-# SCC "ijk" #-} (s x, s y, s z) where s a = fastFloor (a + (x + y + z) / 3)
(x0,y0,z0) = {-# SCC "x0-z0" #-} (x - int i + t, y - int j + t, z - int k + t) where t = int (i + j + k) * g3
(i1,j1,k1,i2,j2,k2) = {-# SCC "i1-k2" #-} if x0 >= y0
then if y0 >= z0 then (1,0,0,1,1,0) else
if x0 >= z0 then (1,0,0,1,0,1) else (0,0,1,1,0,1)
else if y0 < z0 then (0,0,1,0,1,1) else
if x0 < z0 then (0,1,0,0,1,1) else (0,1,0,1,1,0)
xyz1 = {-# SCC "xyz1" #-} (x0 - int i1 + g3, y0 - int j1 + g3, z0 - int k1 + g3)
xyz2 = {-# SCC "xyz2" #-} (x0 - int i2 + 2*g3, y0 - int j2 + 2*g3, z0 - int k2 + 2*g3)
xyz3 = {-# SCC "xyz3" #-} (x0 - 1 + 3*g3, y0 - 1 + 3*g3, z0 - 1 + 3*g3)
(ii,jj,kk) = {-# SCC "iijjkk" #-} (i .&. 255, j .&. 255, k .&. 255)
gi0 = {-# SCC "gi0" #-} mod (p V.! (ii + p V.! (jj + p V.! kk ))) 12
gi1 = {-# SCC "gi1" #-} mod (p V.! (ii + i1 + p V.! (jj + j1 + p V.! (kk + k1)))) 12
gi2 = {-# SCC "gi2" #-} mod (p V.! (ii + i2 + p V.! (jj + j2 + p V.! (kk + k2)))) 12
gi3 = {-# SCC "gi3" #-} mod (p V.! (ii + 1 + p V.! (jj + 1 + p V.! (kk + 1 )))) 12
{-# INLINE n #-}
n gi (x',y',z') = {-# SCC "n" #-} (\a -> if a < 0 then 0 else
a*a*a*a*dot3 (grad3 V.! gi) x' y' z') $ 0.6 - x'*x' - y'*y' - z'*z'
harmonic :: (Num a, Fractional a) => Int -> (a -> a) -> a
harmonic octaves noise = f octaves / (2 - 1 / int (2 ^ (octaves - 1))) where
f 0 = 0
f o = let r = int $ 2 ^ (o - 1) in noise r / r + f (o - 1)
--Generate harmonic 3D noise between -0.5 and 0.5
harmonicNoise3D :: (RealFrac a, Floating a) => Permutation -> Int -> a -> a -> a -> a -> a
harmonicNoise3D p octaves l x y z = harmonic octaves
(\f -> simplex3D p (x * f / l) (y * f / l) (z * f / l))
对于分析,我使用了以下代码,
q _ = let p = perm 0 in
sum [harmonicNoise3D p 3 l x y z :: Float | l <- [1..10], y <- [0..127], x <- [0..15], z <- [0..15]]
main = do start <- getCurrentTime
print $ q ()
end <- getCurrentTime
print $ diffUTCTime end start
产生以下信息:
COST CENTRE MODULE %time %alloc
simplex3D Main 18.8 21.0
n Main 18.0 19.6
out Main 10.1 9.2
harmonicNoise3D Main 9.8 4.5
harmonic Main 6.4 5.8
int Main 4.0 2.9
gi3 Main 4.0 3.0
xyz2 Main 3.5 5.9
gi1 Main 3.4 3.4
gi0 Main 3.4 2.7
fastFloor Main 3.2 0.6
xyz1 Main 2.9 5.9
ijk Main 2.7 3.5
gi2 Main 2.7 3.3
xyz3 Main 2.6 4.1
iijjkk Main 1.6 2.5
dot3 Main 1.6 0.7
为了比较,我还将算法移植到C#。那里的表现快了大约3到4倍,所以我想我一定做错了。但即便如此,它也不像我想的那么快。所以我的问题是:任何人都可以告诉我是否有任何方法可以加快我的实现和/或算法的速度,或者是否有人知道不同的噪声算法具有更好的性能特征但外观相似?
更新
按照下面提供的一些建议后,代码现在看起来如下:
module Noise ( Permutation, perm
, noise3D, simplex3D
) where
import Data.Bits
import qualified Data.Vector.Unboxed as UV
import System.Random
import System.Random.Shuffle
type Permutation = UV.Vector Int
g3 :: Double
g3 = 1/6
{-# INLINE int #-}
int :: Int -> Double
int = fromIntegral
grad3 :: UV.Vector (Double, Double, Double)
grad3 = UV.fromList $ [(1,1,0),(-1, 1,0),(1,-1, 0),(-1,-1, 0),
(1,0,1),(-1, 0,1),(1, 0,-1),(-1, 0,-1),
(0,1,1),( 0,-1,1),(0, 1,-1),( 0,-1,-1)]
{-# INLINE dot3 #-}
dot3 :: (Double, Double, Double) -> Double -> Double -> Double -> Double
dot3 (a,b,c) x y z = a * x + b * y + c * z
{-# INLINE fastFloor #-}
fastFloor :: Double -> Int
fastFloor x = truncate (if x > 0 then x else x - 1)
--Generate a random permutation for use in the noise functions
perm :: Int -> Permutation
perm seed = UV.fromList . concat . replicate 2 . shuffle' [0..255] 256 $ mkStdGen seed
--Generate 3D noise between -0.5 and 0.5
noise3D :: Permutation -> Double -> Double -> Double -> Double
noise3D p x y z = 16 * (n gi0 (x0,y0,z0) + n gi1 xyz1 + n gi2 xyz2 + n gi3 xyz3) where
(i,j,k) = (s x, s y, s z) where s a = fastFloor (a + (x + y + z) / 3)
(x0,y0,z0) = (x - int i + t, y - int j + t, z - int k + t) where t = int (i + j + k) * g3
(i1,j1,k1,i2,j2,k2) = if x0 >= y0
then if y0 >= z0 then (1,0,0,1,1,0) else
if x0 >= z0 then (1,0,0,1,0,1) else (0,0,1,1,0,1)
else if y0 < z0 then (0,0,1,0,1,1) else
if x0 < z0 then (0,1,0,0,1,1) else (0,1,0,1,1,0)
xyz1 = (x0 - int i1 + g3, y0 - int j1 + g3, z0 - int k1 + g3)
xyz2 = (x0 - int i2 + 2*g3, y0 - int j2 + 2*g3, z0 - int k2 + 2*g3)
xyz3 = (x0 - 1 + 3*g3, y0 - 1 + 3*g3, z0 - 1 + 3*g3)
(ii,jj,kk) = (i .&. 255, j .&. 255, k .&. 255)
gi0 = rem (UV.unsafeIndex p (ii + UV.unsafeIndex p (jj + UV.unsafeIndex p kk ))) 12
gi1 = rem (UV.unsafeIndex p (ii + i1 + UV.unsafeIndex p (jj + j1 + UV.unsafeIndex p (kk + k1)))) 12
gi2 = rem (UV.unsafeIndex p (ii + i2 + UV.unsafeIndex p (jj + j2 + UV.unsafeIndex p (kk + k2)))) 12
gi3 = rem (UV.unsafeIndex p (ii + 1 + UV.unsafeIndex p (jj + 1 + UV.unsafeIndex p (kk + 1 )))) 12
{-# INLINE n #-}
n gi (x',y',z') = (\a -> if a < 0 then 0 else
a*a*a*a*dot3 (UV.unsafeIndex grad3 gi) x' y' z') $ 0.6 - x'*x' - y'*y' - z'*z'
harmonic :: Int -> (Double -> Double) -> Double
harmonic octaves noise = f octaves / (2 - 1 / int (2 ^ (octaves - 1))) where
f 0 = 0
f o = let r = 2 ^^ (o - 1) in noise r / r + f (o - 1)
--3D simplex noise
--syntax: simplex3D permutation number_of_octaves wavelength x y z
simplex3D :: Permutation -> Int -> Double -> Double -> Double -> Double -> Double
simplex3D p octaves l x y z = harmonic octaves
(\f -> noise3D p (x * f / l) (y * f / l) (z * f / l))
同时将我的块大小减小到8x8x128,现在以大约10-20 fps的速度生成新的地形块,这意味着移动现在几乎不像以前那样有问题。当然,任何其他性能改进仍然是受欢迎的。
答案 0 :(得分:28)
最初突出的是你的代码高度多态。您应该将浮点类型统一地专门设置为Double
,因此GHC(和LLVM)有可能应用更积极的优化。
注意,对于那些尝试重现的人,此代码导入:
import qualified Data.Vector as V
import Data.Bits
import Data.Time.Clock
import System.Random
import System.Random.Shuffle
type Permutation = V.Vector Int
确定。你可以尝试很多东西来改进这段代码。
<强>改进强>
数据表示
(a,a,a)
替换为未装箱的三重T !Double !Double !Double
Data.Array
切换到Data.Array.Unboxed
{/ 1}} {/ 1}}
Permutations
package 编译器标志
repa
(或等同于-O2 -fvia-C -optc-O3 -fexcess-precision -optc-march=native
)-fllvm
更高效的库函数
-fspec-constr-count=16
替换为mod
rem
替换V.!
索引(移至VU.unsafeIndex
后运行时设置
Data.Vector.Unboxed
或-A20M
另外,检查您的算法是否与C#one相同,并且您使用的是相同的数据结构。