优化Haskell代码

时间:2010-05-26 17:01:18

标签: performance optimization haskell

我正在尝试学习Haskell,在关于Markov文本链的reddit文章之后,我决定首先在Python中实现Markov文本生成,现在在Haskell中实现。但是我注意到我的python实现比Haskell版本更快,甚至Haskell编译为本机代码。我想知道我应该做些什么来使Haskell代码运行得更快,而且现在我认为它因为使用Data.Map而不是hashmaps而慢得多,但我不确定

我也会发布Python代码和Haskell。使用相同的数据,Python需要大约3秒钟,Haskell接近16秒。

不言而喻,我会接受任何建设性的批评:)。

import random
import re
import cPickle
class Markov:
    def __init__(self, filenames):
        self.filenames = filenames
        self.cache = self.train(self.readfiles())
        picklefd = open("dump", "w")
        cPickle.dump(self.cache, picklefd)
        picklefd.close()

    def train(self, text):
        splitted = re.findall(r"(\w+|[.!?',])", text)
        print "Total of %d splitted words" % (len(splitted))
        cache = {}
        for i in xrange(len(splitted)-2):
            pair = (splitted[i], splitted[i+1])
            followup = splitted[i+2]
            if pair in cache:
                if followup not in cache[pair]:
                    cache[pair][followup] = 1
                else:
                    cache[pair][followup] += 1
            else:
                cache[pair] = {followup: 1}
        return cache

    def readfiles(self):
        data = ""
        for filename in self.filenames:
            fd = open(filename)
            data += fd.read()
            fd.close()
        return data

    def concat(self, words):
        sentence = ""
        for word in words:
            if word in "'\",?!:;.":
                sentence = sentence[0:-1] + word + " "
            else:
                sentence += word + " "
        return sentence

    def pickword(self, words):
        temp = [(k, words[k]) for k in words]
        results = []
        for (word, n) in temp:
            results.append(word)
            if n > 1:
                for i in xrange(n-1):
                    results.append(word)
        return random.choice(results)

    def gentext(self, words):
        allwords = [k for k in self.cache]
        (first, second) = random.choice(filter(lambda (a,b): a.istitle(), [k for k in self.cache]))
        sentence = [first, second]
        while len(sentence) < words or sentence[-1] is not ".":
            current = (sentence[-2], sentence[-1])
            if current in self.cache:
                followup = self.pickword(self.cache[current])
                sentence.append(followup)
            else:
                print "Wasn't able to. Breaking"
                break
        print self.concat(sentence)

Markov(["76.txt"])

-

module Markov
( train
, fox
) where

import Debug.Trace
import qualified Data.Map as M
import qualified System.Random as R
import qualified Data.ByteString.Char8 as B


type Database = M.Map (B.ByteString, B.ByteString) (M.Map B.ByteString Int)

train :: [B.ByteString] -> Database
train (x:y:[]) = M.empty
train (x:y:z:xs) = 
     let l = train (y:z:xs)
     in M.insertWith' (\new old -> M.insertWith' (+) z 1 old) (x, y) (M.singleton z 1) `seq` l

main = do
  contents <- B.readFile "76.txt"
  print $ train $ B.words contents

fox="The quick brown fox jumps over the brown fox who is slow jumps over the brown fox who is dead."

6 个答案:

答案 0 :(得分:11)

a)你是如何编译它的? (ghc -O2?)

b)哪个版本的GHC?

c)Data.Map非常有效,但你可以被欺骗进入延迟更新 - 使用insertWith',而不是insertWithKey。

d)不要将bytestrings转换为String。将它们保存为字节串,并将它们存储在Map

答案 1 :(得分:9)

Data.Map的设计假设类Ord比较需要恒定的时间。对于字符串键,情况可能并非如此 - 当字符串相等时,情况绝对不是这样。您可能会也可能不会遇到此问题,具体取决于您的语料库的大小以及有多少单词具有共同的前缀。

我很想尝试一种旨在使用序列键操作的数据结构,例如bytestring-trie所建议的Don Stewart包。

答案 2 :(得分:7)

我尽量避免做任何花哨或微妙的事情。这只是进行分组的两种方法;第一个强调模式匹配,第二个强调不匹配。

import Data.List (foldl')
import qualified Data.Map as M
import qualified Data.ByteString.Char8 as B

type Database2 = M.Map (B.ByteString, B.ByteString) (M.Map B.ByteString Int)

train2 :: [B.ByteString] -> Database2
train2 words = go words M.empty
    where go (x:y:[]) m = m
          go (x:y:z:xs) m = let addWord Nothing   = Just $ M.singleton z 1
                                addWord (Just m') = Just $ M.alter inc z m'
                                inc Nothing    = Just 1
                                inc (Just cnt) = Just $ cnt + 1
                            in go (y:z:xs) $ M.alter addWord (x,y) m

train3 :: [B.ByteString] -> Database2
train3 words = foldl' update M.empty (zip3 words (drop 1 words) (drop 2 words))
    where update m (x,y,z) = M.alter (addWord z) (x,y) m
          addWord word = Just . maybe (M.singleton word 1) (M.alter inc word)
          inc = Just . maybe 1 (+1)

main = do contents <- B.readFile "76.txt"
          let db = train3 $ B.words contents
          print $ "Built a DB of " ++ show (M.size db) ++ " words"

我认为它们都比原版快,但不可否认,我只是针对我找到的第一个合理的语料库尝试过它们。

EDIT 根据Travis Brown的非常有效的观点,

train4 :: [B.ByteString] -> Database2
train4 words = foldl' update M.empty (zip3 words (drop 1 words) (drop 2 words))
    where update m (x,y,z) = M.insertWith (inc z) (x,y) (M.singleton z 1) m
          inc k _ = M.insertWith (+) k 1

答案 3 :(得分:3)

这是基于foldl'的版本,其速度似乎是train的两倍:

train' :: [B.ByteString] -> Database
train' xs = foldl' (flip f) M.empty $ zip3 xs (tail xs) (tail $ tail xs)
  where
    f (a, b, c) = M.insertWith (M.unionWith (+)) (a, b) (M.singleton c 1)

我在Project Gutenberg Huckleberry Finn(我假设是你的76.txt)上尝试过它,它产生与你的函数相同的输出。我的时间比较是非常不科学的,但这种方法可能值得一看。

答案 4 :(得分:2)

1)我不清楚你的代码。 a)您定义“狐狸”但不使用它。你是否意味着我们试图帮助你使用“狐狸”而不是阅读文件? b)你将其声明为“模块Markov”,然后在模块中有一个“main”。 c)不需要System.Random。如果您在发布之前清理代码,它确实可以帮助我们。

2)使用ByteStrings和Don说的一些严格的操作。

3)使用-O2编译并使用-fforce-recomp以确保您实际重新编译了代码。

4)尝试这种轻微的转换,它的工作速度非常快(0.005秒)。显然输入非常小,所以你需要提供你的文件或者自己测试一下。

{-# LANGUAGE OverloadedStrings, BangPatterns #-}
module Main where

import qualified Data.Map as M
import qualified Data.ByteString.Lazy.Char8 as B


type Database = M.Map (B.ByteString, B.ByteString) (M.Map B.ByteString Int)

train :: [B.ByteString] -> Database
train xs = go xs M.empty
  where
  go :: [B.ByteString] -> Database -> Database
  go (x:y:[]) !m = m
  go (x:y:z:xs) !m =
     let m' =  M.insertWithKey' (\key new old -> M.insertWithKey' (\_ n o -> n + 1) z 1 old) (x, y) (M.singleton z 1) m
     in go (y:z:xs) m'

main = print $ train $ B.words fox

fox="The quick brown fox jumps over the brown fox who is slow jumps over the brown fox who is dead."

答案 5 :(得分:1)

正如Don所建议的那样,请考虑使用函数的更严格版本:insertWithKey'(和M.insertWith',因为你无论如何都忽略了密钥参数)。

看起来您的代码可能会累积大量的内容,直到它到达[String]的末尾。

退房:http://book.realworldhaskell.org/read/profiling-and-optimization.html

...特别是尝试绘制堆图(大约在本章的一半)。有兴趣了解你的想法。