我考虑使用lifelines
软件包来适合Cox-Proportional-Hazards-Model。我读到了lifelines uses a nonparametric approach to fit the baseline hazard,在某些时间点会导致不同的baseline_hazard(请参见下面的代码示例)。对于我的应用程序,我需要一个
exponential distribution leading to a baseline hazard h0(t) = lambda,在整个时间范围内保持不变。
所以我的问题是:(与此同时)是否可以在lifelines
或其他Python包中运行具有基准风险指数分布的Cox-Proportional-Hazards-Model?
示例代码:
from lifelines import CoxPHFitter
import pandas as pd
df = pd.DataFrame({'duration': [4, 6, 5, 5, 4, 6],
'event': [0, 0, 0, 1, 1, 1],
'cat': [0, 1, 0, 1, 0, 1]})
cph = CoxPHFitter()
cph.fit(df, duration_col='duration', event_col='event', show_progress=True)
cph.baseline_hazard_
给予
baseline hazard
T
4.0 0.160573
5.0 0.278119
6.0 0.658032
答案 0 :(得分:1)
?lifelines作者在此处。
因此,此模型不是生命线中的本机,但是您可以轻松地自己实现它(也许将来我会做一些事情)。这个想法依赖于比例风险模型和AFT(加速故障时间)模型的交集。在具有指数危险(即恒定基线危险)的cox-ph模型中,危险看起来像:
h(t|x) = lambda_0(t) * exp(beta * x) = lambda_0 * exp(beta * x)
在AFT指数分布规范中,危害看起来像:
h(t|x) = exp(-beta * x - beta_0) = exp(-beta * x) * exp(-beta_0) = exp(-beta * x) * lambda_0
请注意负号差异!
因此,除了进行CoxPH之外,我们还可以进行指数AFT拟合(如果需要与CoxPH相同的解释,请翻转符号)。我们可以使用自定义注册模型语法来做到这一点:
from lifelines.fitters import ParametricRegressionFitter
from autograd import numpy as np
class ExponentialAFTFitter(ParametricRegressionFitter):
# this is necessary, and should always be a non-empty list of strings.
_fitted_parameter_names = ['lambda_']
def _cumulative_hazard(self, params, T, Xs):
# params is a dictionary that maps unknown parameters to a numpy vector.
# Xs is a dictionary that maps unknown parameters to a numpy 2d array
lambda_ = np.exp(np.dot(Xs['lambda_'], params['lambda_']))
return T / lambda_
对此进行测试
from lifelines.datasets import load_rossi
from lifelines import CoxPHFitter
rossi = load_rossi()
rossi['intercept'] = 1
regressors = {'lambda_': rossi.columns}
eaf = ExponentialAFTFitter().fit(rossi, "week", "arrest", regressors=regressors)
eaf.print_summary()
"""
<lifelines.ExponentialAFTFitter: fitted with 432 observations, 318 censored>
event col = 'arrest'
number of subjects = 432
number of events = 114
log-likelihood = -686.37
time fit was run = 2019-06-27 15:13:18 UTC
---
coef exp(coef) se(coef) z p -log2(p) lower 0.95 upper 0.95
lambda_ fin 0.37 1.44 0.19 1.92 0.06 4.18 -0.01 0.74
age 0.06 1.06 0.02 2.55 0.01 6.52 0.01 0.10
race -0.30 0.74 0.31 -0.99 0.32 1.63 -0.91 0.30
wexp 0.15 1.16 0.21 0.69 0.49 1.03 -0.27 0.56
mar 0.43 1.53 0.38 1.12 0.26 1.93 -0.32 1.17
paro 0.08 1.09 0.20 0.42 0.67 0.57 -0.30 0.47
prio -0.09 0.92 0.03 -3.03 <0.005 8.65 -0.14 -0.03
_intercept 4.05 57.44 0.59 6.91 <0.005 37.61 2.90 5.20
_fixed _intercept 0.00 1.00 0.00 nan nan nan 0.00 0.00
---
"""
CoxPHFitter().fit(load_rossi(), 'week', 'arrest').print_summary()
"""
<lifelines.CoxPHFitter: fitted with 432 observations, 318 censored>
duration col = 'week'
event col = 'arrest'
number of subjects = 432
number of events = 114
partial log-likelihood = -658.75
time fit was run = 2019-06-27 15:17:41 UTC
---
coef exp(coef) se(coef) z p -log2(p) lower 0.95 upper 0.95
fin -0.38 0.68 0.19 -1.98 0.05 4.40 -0.75 -0.00
age -0.06 0.94 0.02 -2.61 0.01 6.79 -0.10 -0.01
race 0.31 1.37 0.31 1.02 0.31 1.70 -0.29 0.92
wexp -0.15 0.86 0.21 -0.71 0.48 1.06 -0.57 0.27
mar -0.43 0.65 0.38 -1.14 0.26 1.97 -1.18 0.31
paro -0.08 0.92 0.20 -0.43 0.66 0.59 -0.47 0.30
prio 0.09 1.10 0.03 3.19 <0.005 9.48 0.04 0.15
---
Concordance = 0.64
Log-likelihood ratio test = 33.27 on 7 df, -log2(p)=15.37
"""
请注意标志更改!因此,如果您希望模型中存在恒定的基准危害,则为exp(-4.05)
。