Obtain the baseline hazard function/survival function from an extended Cox model (with external time-dependent covariates)

时间:2015-08-14 22:47:34

标签: r survival-analysis cox-regression

I am applying an extended Cox model with external time-dependent covariates. Here is a small example (df) which I borrowed and modified from Themeau and Grambsch's book, Modeling survival data : extending the Cox model (2001):

id start stop  event trt bili albumin
1  0      188    0    1  1.8 2.54
1  188    372    0    1  1.6 2.88
1  372    729    0    1  1.7 2.80
1  729    1254   0    1  3.2 2.92
1  1254   1462   0    1  3.7 2.59
1  1462   1824   0    1  4.0 2.59
1  1824   1925   1    1  5.3 1.83
2  0      56     0    0  1.8 2.36
2  56     172    0    0  1.6 1.89
2  172    521    1    0  1.7 1.56
3  0      36     0    1  3.2 2.10
3  36     232    0    1  3.7 2.32
3  232    352    0    1  4.0 1.96
3  352    610    1    1  5.3 2.05

I would like to obtain the baseline hazard/survival function from the extended Cox model. In the classical Cox PH model which handles time-independent covariates, it seems that we can obtain the estimate of H(t) using the Nelson-Aalen estimator:

fit1<- coxph(Surv(time, event) ~ tidc's, data=df)
sfit<-survfit(fit1)
sfit$surv
H<- -log(sfit$surv)
H<- c(H, tail(H, 1))

I am wondering how to obtain the baseline hazard/survival function from the extended Cox model, when external time-dependent covariates are used instead? Could I use the similar method like this?

model_1<-coxph(Surv(start,stop,event) ~ treat+log(bili)+log(albumin),data=df)
mfit<-survfit(model_1)
mfit$surv
H1<- -log(mfit$surv)
H1<- c(H1, tail(H1, 1))

Thanks.

0 个答案:

没有答案