我不知道如何在Unity中根据四元数计算旋转矩阵。
通用旋转矩阵的计算如下:
http://www.utdallas.edu/~sxb027100/dock/quaternion.html
下面是wxmaxima的代码。
l: matrix([w, z, -y, x], [-z, w, x, y], [y, -x, w, z], [-x, -y, -z, w]);
r: matrix([w, z, -y, -x], [-z, w, x, -y], [y, -x, w, -z], [x, y, z, w]);
lr: l . r;
着眼于通用旋转矩阵的z轴(0,0,1),它是以下公式。
2xz-2wy
2yz+2wx
w^2-x^2-y^2+z^2=1-2x^2-2y^2
在Unity中,是以下公式。
2xz+2wy
2yz-2wx
1-2x^2+2y^2
上述区别是什么?
下面是Unity中的参考代码。
public static Vector3 operator *(Quaternion rotation, Vector3 point)
{
float num1 = rotation.x * 2f;
float num2 = rotation.y * 2f;
float num3 = rotation.z * 2f;
float num4 = rotation.x * num1;
float num5 = rotation.y * num2;
float num6 = rotation.z * num3;
float num7 = rotation.x * num2;
float num8 = rotation.x * num3;
float num9 = rotation.y * num3;
float num10 = rotation.w * num1;
float num11 = rotation.w * num2;
float num12 = rotation.w * num3;
Vector3 vector3;
vector3.x = (float) ((1.0 - ((double) num5 + (double) num6)) * (double) point.x + ((double) num7 - (double) num12) * (double) point.y + ((double) num8 + (double) num11) * (double) point.z);
vector3.y = (float) (((double) num7 + (double) num12) * (double) point.x + (1.0 - ((double) num4 + (double) num6)) * (double) point.y + ((double) num9 - (double) num10) * (double) point.z);
vector3.z = (float) (((double) num8 - (double) num11) * (double) point.x + ((double) num9 + (double) num10) * (double) point.y + (1.0 - ((double) num4 + (double) num5)) * (double) point.z);
return vector3;
}
答案 0 :(得分:0)
对直接(右侧)轴系统进行通用旋转,而单位为间接(左侧)轴系统。那应该解释-号以及您得到的区别。