我目前正在研究解决火车时刻表优化问题,这是我学习的一部分。在这个问题中,必须最大化效用函数,从而增加访问的(关键)车站的数量,并减少列车的使用量以及列车运行的总分钟数。
问题包括工作站(节点)和连接(边缘)。这两个数据都首先从两个CSV文件加载。然后,为每个站点(包含名称以及是否关键)和每个连接(在连接中包含站点以及彼此花费的时间)实例化类。这些站点和连接都存储在词典中。
第一步,我和我的队友们决定首先要实现Dijkstra的寻路算法版本,以便找到两个站点之间的最快路线。 BogoToBogo非常详细地介绍了如何实现Dijkstra算法的版本。我们首先决定尝试并实现他们的代码,以查看结果如何。但是,TypeError不断弹出:
TypeError:“ Vertex”和“ Vertex”的实例之间不支持“ <”
如果任何人知道导致此错误的原因,将不胜感激!
#Makes the shortest path from v.previous
def shortest(v, path):
if v.previous:
path.append(v.previous.get_id())
shortest(v.previous, path)
return
def dijkstra(aGraph, start, target):
print('Dijkstras shortest path')
# Set the distance for the start node to zero
start.set_distance(0)
# Put tuple pair into the priority queue
unvisited_queue = [(v.get_distance(),v) for v in aGraph]
heapq.heapify(unvisited_queue)
while len(unvisited_queue):
# Pops a vertex with the smallest distance
uv = heapq.heappop(unvisited_queue)
current = uv[1]
current.set_visited()
#for next in v.adjacent:
for next in current.adjacent:
# if visited, skip
if next.visited:
continue
new_dist = current.get_distance() + current.get_weight(next)
if new_dist < next.get_distance():
next.set_distance(new_dist)
next.set_previous(current)
print('updated : current = ' + current.get_id() + ' next = ' + next.get_id() + ' new_dist = ' + next.get_distance())
else:
print('not updated : current = ' + current.get_id() + ' next = ' + next.get_id() + ' new_dist = ' + next.get_distance())
# Rebuild heap
# 1. Pop every item
while len(unvisited_queue):
heapq.heappop(unvisited_queue)
# 2. Put all vertices not visited into the queue
unvisited_queue = [(v.get_distance(),v) for v in aGraph if not v.visited]
heapq.heapify(unvisited_queue)
if __name__ == "__main__":
# Calling the CSV loading functions in mainActivity
# These functions will also instantiate station and connections objects
load_stations(INPUT_STATIONS)
load_connections(INPUT_CONNECTIONS)
g = Graph()
for index in stations:
g.add_vertex(stations[index].name)
for counter in connections:
g.add_edge(connections[counter].stat1, connections[counter].stat2, int(connections[counter].time))
for v in g:
for w in v.get_connections():
vid = v.get_id()
wid = w.get_id()
print( vid, wid, v.get_weight(w))
dijkstra(g, g.get_vertex('Alkmaar'), g.get_vertex('Zaandam'))
target = g.get_vertex('Zaandam')
path = [target.get_id()]
shortest(target, path)
print('The shortest path :' + (path[::-1]))
在这种情况下,给定参数g(这是Graph类的实例),Alkmaar和Zaandam,将调用函数dijkstra。
# Represents a grid of nodes/stations composed of nodes and edges
class Graph:
def __init__(self):
self.vert_dict = {}
self.num_vertices = 0
def __iter__(self):
return iter(self.vert_dict.values())
def add_vertex(self, node):
self.num_vertices = self.num_vertices + 1
new_vertex = Vertex(node)
self.vert_dict[node] = new_vertex
return new_vertex
def get_vertex(self, n):
if n in self.vert_dict:
return self.vert_dict[n]
else:
return None
def add_edge(self, frm, to, cost = 0):
if frm not in self.vert_dict:
self.add_vertex(frm)
if to not in self.vert_dict:
self.add_vertex(to)
self.vert_dict[frm].add_neighbor(self.vert_dict[to], cost)
self.vert_dict[to].add_neighbor(self.vert_dict[frm], cost)
def get_vertices(self):
return self.vert_dict.keys()
def set_previous(self, current):
self.previous = current
def get_previous(self, current):
return self.previous
Graph类。
# Represents a node (station)
class Vertex:
def __init__(self, node):
self.id = node
self.adjacent = {}
# Set distance to infinity for all nodes
self.distance = sys.maxsize
# Mark all nodes unvisited
self.visited = False
# Predecessor
self.previous = None
def add_neighbor(self, neighbor, weight=0):
self.adjacent[neighbor] = weight
def get_connections(self):
return self.adjacent.keys()
def get_id(self):
return self.id
def get_weight(self, neighbor):
return self.adjacent[neighbor]
def set_distance(self, dist):
self.distance = dist
def get_distance(self):
return self.distance
def set_previous(self, prev):
self.previous = prev
def set_visited(self):
self.visited = True
def __str__(self):
return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent])
Vertex类。 谢谢您的宝贵时间!
答案 0 :(得分:0)
我认为这可能会有所帮助,但是发布到stackoverflow的方式只是发布尽可能少的完整信息
# Put tuple pair into the priority queue
unvisited_queue = [(v.get_distance(),v) for v in aGraph]
heapq.heapify(unvisited_queue)
如果您看这段代码,它会将列表转换为需要<
比较所提供内容的堆,在vertex类中定义__gt__()
方法,该函数将确定获取什么首先弹出,所以请按照您认为合适的方式写出来,我认为错误会消失。 :-)