Dijkstra算法 - 最短路径中节点的错误顺序

时间:2015-12-25 16:10:33

标签: python algorithm dijkstra

我一直在做学校作业,我需要实现Dijkstra的算法。这本身并不太难,但不幸的是,自动检查脚本不同意我的所有实现(我实际上做了8个不同的版本)。所有初始数据检查都能正常工作,只有当脚本生成随机数据时,才会有所不同。我的路径和脚本的路径具有相同的距离,但路径上的顶点不同。例如:

  

教师路径:City2,City15,City16,City6,

     

学生路径:City2,City15,City18,City0,City6,

我甚至联系了那位刚回答“你必须使用优先级队列:-)”的老师,尽管我使用了一个(事实上,从我自己到heapq的几个实现)。我做错了什么或教师脚本是不正确的?我希望代码能够自我评论,足以让人理解。感谢您给我的任何建议。

在源顶点上调用算法,并计算到每个其他连接节点的最短距离和路径。如果顶点具有与已经存在的那些相同的minDistance(即优先级),它应该在它之前,而不是在它之后。

class Node:
    """Basic node of the priority queue"""
    def __init__(self, data, priority):
        self.data = data
        self.nextNode = None
        self.priority = priority
        self.id = data.id

class PriorityQueue:
    """Basic priority queue with add, remove and update methods"""
    def __init__(self):
        self.head = None
        self.count = 0

    def add(self, data, priority):
        """Adds data with priority in the proper place"""
        node = Node(data, priority)
        if not self.head:
            self.head = node
        elif node.priority <= self.head.priority:
            node.nextNode = self.head
            self.head = node
        else:
            checker = self.head
            while True:
                if not checker.nextNode or node.priority >= checker.nextNode.priority:
                    break
                checker = checker.nextNode
            node.nextNode = checker.nextNode
            checker.nextNode = node
        return 0

    def remove(self, data):
        """Removes specified node and reconnects the remaining nodes, does nothing if node not found"""
        checker = self.head
        if not self.head:
            return 0
        if checker.id == data.id:
            self.head = checker.nextNode
        while True:
            checker = checker.nextNode
            if not checker or not checker.nextNode:
                return 0
            if checker.nextNode.id == data.id:
                checker.nextNode = checker.nextNode.nextNode
                break
        return 0

    def update(self, data):
        """Updates priority of existing node via removing and re-adding it"""
        self.remove(data)
        self.add(data, data.minDistance)
        return 0

    def getMin(self):
        """Returns the minimum priority data"""
        min = self.head
        return min.data

class Edge:
    """Edge of the graph, contains source, target and weight of line"""
    def __init__(self, source, target, weight):
        self.source = source
        self.target = target
        self.weight = weight

class Vertex:
    """Vertex of the graph, everything except id and name is filled later"""
    def __init__(self, id, name):
        self.id = id
        self.name = name
        self.minDistance = float('inf')
        self.previousVertex = None
        self.edges = []
        self.visited = False

class Dijkstra:
    """Dijkstra's algorithm implementation"""
    def __init__(self):
        self.vertexes = []
        self.nodes = {}
        self.unvisited = PriorityQueue()

    def createGraph(self, vertexes, edgesToVertexes):
        """Connects edges to appropriate vertexes, adds vertexes to node dictionary"""
        self.vertexes = vertexes
        for vertex in self.vertexes:
            for edge in edgesToVertexes:
                if vertex.id == edge.source:
                    vertex.edges.append(edge)
                    edgesToVertexes.remove(edge)
            self.nodes[vertex.id] = vertex
        return 0

    def getVertexes(self):
        """Returns vertexes in graph, should be called after creating it just to check"""
        return self.vertexes

    def computePath(self, sourceId):
        """Fills in minDistance and previousVertex of all nodes from source"""
        mainNode = self.nodes[sourceId]
        mainNode.minDistance = 0
        self.unvisited.add(mainNode, 0)

        while self.unvisited.head:
            mainNode = self.unvisited.getMin()
            mainNode.visited=True
            for edge in mainNode.edges:
                tempDistance = mainNode.minDistance + edge.weight
                targetNode = self.nodes[edge.target]
                self.unvisited.remove(mainNode)
                if tempDistance < targetNode.minDistance:
                    targetNode.minDistance = tempDistance
                    targetNode.previousVertex = mainNode
                    self.unvisited.update(targetNode)
        return 0

    def getShortestPathTo(self, targetId):
        """Returns list of shortest parth to targetId from source. Call only after doing ComputePath"""
        path = []
        mainNode = self.nodes[targetId]
        while True:
            path.append(mainNode)
            mainNode = mainNode.previousVertex
            if not mainNode:
                break
        return list(reversed(path))

    def resetDijkstra(self):
        """Resets ComputePath but leaves graph untouched"""
        for vertex in self.vertexes:
            vertex.minDistance = float('inf')
            vertex.previousVertex = None
        return 0

1 个答案:

答案 0 :(得分:0)

def createGraph(self, vertexes, edgesToVertexes):
    """Connects edges to appropriate vertexes, adds vertexes to node dictionary"""
    self.vertexes = vertexes
    for vertex in self.vertexes:
        for edge in edgesToVertexes:
            if vertex.id == edge.source:
                vertex.edges.append(edge)
                edgesToVertexes.remove(edge)
        self.nodes[vertex.id] = vertex
    return 0

我相信这是错误的=&gt; edgesToVertexes.remove(边缘)

我有类似的家庭作业,并使用了一些代码,我认为这一行不正确。它在每个循环中从涡旋中移除了一条路径。