Python:如何使用ARCH Lib的均值模型拟合ARMA(p,q)-GARCH(r,s)

时间:2019-03-19 13:10:56

标签: python time-series statsmodels arch

我正在尝试,类似于R的丑陋

# standard GARCH model with optional ARMA part
        spec <- ugarchspec(variance.model = list(model = "sGARCH",    garchOrder = c(r,s)),
                           mean.model     = list(armaOrder = c(p,q)), distribution.model = dist[1])

ugarchfit(spec, data = x[,i], solver = "hybrid", fit.control = list(scale = 1),
                             numderiv.control = list(hess.eps = 1e-2))

使用ARCH库将ARIMA(p,0,q)-GARCH(r,s)联合到多个时间序列。我想根据几种测试方法找出p,q,r,s的最佳拟合参数
根据ARCH文档的均值模型,可以选择无均值恒定均值自回归异构自回归

arch.arch_model(y, x=None, mean='Constant', lags=0, vol='Garch', p=1, o=0, q=1, power=2.0, dist='Normal', hold_back=None)[source]

如何在python中指定类似于AR的可选MA组件(类似于statsmodels.tsa.arima_model.ARMA)?

非常感谢您。

0 个答案:

没有答案