我正在尝试,类似于R的丑陋
# standard GARCH model with optional ARMA part
spec <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(r,s)),
mean.model = list(armaOrder = c(p,q)), distribution.model = dist[1])
ugarchfit(spec, data = x[,i], solver = "hybrid", fit.control = list(scale = 1),
numderiv.control = list(hess.eps = 1e-2))
使用ARCH库将ARIMA(p,0,q)-GARCH(r,s)联合到多个时间序列。我想根据几种测试方法找出p,q,r,s的最佳拟合参数
根据ARCH文档的均值模型,可以选择无均值,恒定均值,自回归和异构自回归。
arch.arch_model(y, x=None, mean='Constant', lags=0, vol='Garch', p=1, o=0, q=1, power=2.0, dist='Normal', hold_back=None)[source]
如何在python中指定类似于AR的可选MA组件(类似于statsmodels.tsa.arima_model.ARMA)?
非常感谢您。