我正在这样使用solvePnP。
import cv2
import numpy as np
# Read Image
im = cv2.imread("headPose.jpg");
size = im.shape
#2D image points. If you change the image, you need to change vector
image_points = np.array([
(359, 391), # Nose tip
(399, 561), # Chin
(337, 297), # Left eye left corner
(513, 301), # Right eye right corne
(345, 465), # Left Mouth corner
(453, 469) # Right mouth corner
], dtype="double")
# 3D model points.
model_points = np.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, -330.0, -65.0), # Chin
(-225.0, 170.0, -135.0), # Left eye left corner
(225.0, 170.0, -135.0), # Right eye right corne
(-150.0, -150.0, -125.0), # Left Mouth corner
(150.0, -150.0, -125.0) # Right mouth corner
])
# Camera internals
focal_length = size[1]
center = (size[1]/2, size[0]/2)
camera_matrix = np.array(
[[focal_length, 0, center[0]],
[0, focal_length, center[1]],
[0, 0, 1]], dtype = "double"
)
print "Camera Matrix :\n {0}".format(camera_matrix)
dist_coeffs = np.zeros((4,1)) # Assuming no lens distortion
(success, rotation_vector, translation_vector) = cv2.solvePnP(model_points, image_points, camera_matrix, dist_coeffs, flags=cv2.CV_ITERATIVE)
print "Rotation Vector:\n {0}".format(rotation_vector)
print "Translation Vector:\n {0}".format(translation_vector)
我对旋转矢量和翻译矢量实际上是什么感到困惑?我想我需要将这些角度转换为欧拉角,以便为我提供3个值,分别是俯仰,侧倾和偏航。
这是正确的吗?有人有这样的例子吗?
答案 0 :(得分:1)
rvecs是旋转的轴角表示,通常需要4个数字[v,theta],但是必须将v作为单位矢量,因此将其长度编码为theta,从而将所需的数字减少到3。 >
对于代码,应该是这样的。
def pnp(objectPoints,imgPoints,w,h,f):
cameraMatrix = np.array([[f,0,w/2.0],
[0,f,h/2.0],
[0,0,1]])
distCoeffs = np.zeros((5,1))
revtval,rvecs, tvecs =cv2.solvePnP(objectPoints[:,np.newaxis,:], imgPoints[:,np.newaxis,:], cameraMatrix, distCoeffs)#,False,flags=cv2.SOLVEPNP_EPNP)
return rvecs,tvecs
def rot_params_rv(rvecs):
from math import pi,atan2,asin
R = cv2.Rodrigues(rvecs)[0]
roll = 180*atan2(-R[2][1], R[2][2])/pi
pitch = 180*asin(R[2][0])/pi
yaw = 180*atan2(-R[1][0], R[0][0])/pi
rot_params= [roll,pitch,yaw]
return rot_params