(p∧q)∧(p⇒¬q)证明矛盾?

时间:2018-09-18 03:08:32

标签: math discrete-mathematics

因此,在此之后我已经走到了死胡同,在此之后我尝试执行de Morgan统治,但之后却面临死胡同。 我已经尝试过了

(p ∧ q) ∧ (¬p ∨ ¬q)
(p ∧ q) ∧ ¬(p ∧ q)

3 个答案:

答案 0 :(得分:0)

让p∧q = X,然后

(p∧q)∧¬(p∧q)可以写成X¬X X,这与补律是矛盾的。

答案 1 :(得分:-1)

实际上,您的第二个表达式已经是您需要的形式:它声明A ∧ ¬A,这与定义是矛盾的。

答案 2 :(得分:-1)

(p ∧ q) ∧ (¬p ∨ ¬q)

通过De Morgan's law,它变为:

(p ∧ q) ∧ -(p ∧ q)

这样一个矛盾:(p ∧ q) AND NOT (p ∧ q)

Contradiction

例如: p = "I went to the beach" q = "I played football"

逻辑说明如下:

I went to the beach and played football, and I did not go to the beach and I did not play football

这是一个矛盾。