查找与样本对应的模型值。这是分两个步骤完成的,
a。将每个样本与其代表的百分位数相关联。 pi =(i-0.5)/ n
b。计算与该百分比相关的模型值。这是通过反转模型CDF来完成的,就像从模型分布中生成随机变量一样。因此,与样本i对应的模型值为Finverse(pi)。
c。使用n点绘制Q-Q图
(X(i),Finverse(pi))1≤i≤n
使用这种方法,我想到了以下python实现。
_distn_names = ["pareto"]
def fit_to_all_distributions(data):
dist_names = _distn_names
params = {}
for dist_name in dist_names:
try:
dist = getattr(st, dist_name)
param = dist.fit(data)
params[dist_name] = param
except Exception:
print("Error occurred in fitting")
params[dist_name] = "Error"
return params
def get_q_q_plot(values, dist, params):
values.sort()
arg = params[:-2]
loc = params[-2]
scale = params[-1]
x = []
for i in range(len(values)):
x.append((i-0.5)/len(values))
y = getattr(st, dist).ppf(x, loc=loc, scale=scale, *arg)
y = list(y)
emp_percentiles = values
dist_percentiles = y
print("Emperical Percentiles")
print(emp_percentiles)
print("Distribution Percentiles")
print(dist_percentiles)
plt.figure()
plt.xlabel('dist_percentiles')
plt.ylabel('actual_percentiles')
plt.title('Q Q plot')
plt.plot(dist_percentiles, emp_percentiles)
plt.savefig("/path/q-q-plot.png")
b = 2.62
latencies = st.pareto.rvs(b, size=500)
data = pd.Series(latencies)
params = fit_to_all_distributions(data)
pareto_params = params["pareto"]
get_q_q_plot(latencies, "pareto", pareto_params)
理想情况下,我应该得到一条直线,但这就是我得到的。
为什么我没有直线?我的实现中有什么问题吗?
答案 0 :(得分:0)
您可以使用以下代码获取任何分布的Q-Q图(scipy统计信息中有82个)。
import os
import matplotlib.pyplot as plt
import sys
import math
import numpy as np
import scipy.stats as st
from scipy.stats._continuous_distns import _distn_names
from scipy.optimize import curve_fit
def get_q_q_plot(latency_values, distribution):
distribution = getattr(st, distribution)
params = distribution.fit(latency_values)
latency_values.sort()
arg = params[:-2]
loc = params[-2]
scale = params[-1]
x = []
for i in range(1, len(latency_values)):
x.append((i-0.5) / len(latency_values))
y = distribution.ppf(x, loc=loc, scale=scale, *arg)
y = list(y)
emp_percentiles = latency_values[1:]
dist_percentiles = y
return emp_percentiles, dist_percentiles