如何在`rmgarch`

时间:2018-08-10 15:49:13

标签: r

昨天我尝试在gogarchspec中使用gogarchfitgogarchforecastrmgarch,但发现没有可检索的aic值。

> fit

*------------------------------*
*        GO-GARCH Fit          *
*------------------------------*

Mean Model      : VAR
(Lag)           : 1
(Robust)        : FALSE
GARCH Model     : gjrGARCH
Distribution    : mvnorm
ICA Method      : fastica
No. Factors     : 3
No. Periods     : 1475
Log-Likelihood  : NA
------------------------------------

U (rotation matrix) : 

       [,1]    [,2]   [,3]
[1,] -0.059  0.9973 0.0435
[2,] -0.594 -0.0701 0.8017
[3,]  0.803  0.0214 0.5962

A (mixing matrix) : 

         [,1]    [,2]      [,3]
[1,] 4.49e-05 -0.0258  0.000127
[2,] 1.80e-03 -0.0260 -0.004237
[3,] 4.19e-03 -0.0257 -0.000478
[4,] 6.78e-05 -0.0259  0.000116

上面是拟合模型,下面是模型的属性,但显示aic值无法检索。

> ## attributes of univariate stage 1
> attributes(attributes(fit)$mfit$ufit)
$`fit`
$`fit`[[1]]

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics   
-----------------------------------
GARCH Model : gjrGARCH(1,1)
Mean Model  : ARFIMA(0,0,0)
Distribution    : norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
omega   0.005346    0.002855   1.8723 0.061167
alpha1  0.057142    0.012491   4.5746 0.000005
beta1   0.955136    0.006263 152.4948 0.000000
gamma1 -0.026556    0.012794  -2.0756 0.037931

Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
omega   0.005346    0.004330   1.2344 0.217043
alpha1  0.057142    0.014525   3.9340 0.000084
beta1   0.955136    0.004851 196.9049 0.000000
gamma1 -0.026556    0.016780  -1.5826 0.113509

LogLikelihood : -2016.878 

Information Criteria
------------------------------------

Akaike       2.7402
Bayes        2.7545
Shibata      2.7402
Hannan-Quinn 2.7455

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic  p-value
Lag[1]                   0.003505 0.952788
Lag[2*(p+q)+(p+q)-1][2]  6.443923 0.016755
Lag[4*(p+q)+(p+q)-1][5] 12.082773 0.002649
d.o.f=0
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                      2.143  0.1432
Lag[2*(p+q)+(p+q)-1][5]     3.096  0.3898
Lag[4*(p+q)+(p+q)-1][9]     3.467  0.6801
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]     1.363 0.500 2.000  0.2430
ARCH Lag[5]     1.384 1.440 1.667  0.6233
ARCH Lag[7]     1.470 2.315 1.543  0.8274

Nyblom stability test
------------------------------------
Joint Statistic:  1.0821
Individual Statistics:              
omega  0.07099
alpha1 0.10828
beta1  0.11995
gamma1 0.09015

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.07 1.24 1.6
Individual Statistic:    0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           0.2798 0.7796    
Negative Sign Bias  1.0104 0.3125    
Positive Sign Bias  0.3739 0.7086    
Joint Effect        1.9887 0.5748    


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     292.2    8.015e-51
2    30     322.3    3.064e-51
3    40     315.2    6.495e-45
4    50     345.2    3.814e-46


Elapsed time : 0.6845639 


$`fit`[[2]]

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics   
-----------------------------------
GARCH Model : gjrGARCH(1,1)
Mean Model  : ARFIMA(0,0,0)
Distribution    : norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
omega   0.002153    0.000008   261.73        0
alpha1  0.102055    0.000012  8831.33        0
beta1   0.884322    0.002903   304.64        0
gamma1 -0.102709    0.000139  -740.41        0

Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
omega   0.002153    0.000282   7.6367        0
alpha1  0.102055    0.000145 704.3463        0
beta1   0.884322    0.046124  19.1728        0
gamma1 -0.102709    0.006434 -15.9638        0

LogLikelihood : -215.4113 

Information Criteria
------------------------------------

Akaike       0.29751
Bayes        0.31187
Shibata      0.29749
Hannan-Quinn 0.30286

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                      3.416 0.06456
Lag[2*(p+q)+(p+q)-1][2]     3.526 0.10118
Lag[4*(p+q)+(p+q)-1][5]     3.744 0.28773
d.o.f=0
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                  0.0001372  0.9907
Lag[2*(p+q)+(p+q)-1][5] 0.0008338  1.0000
Lag[4*(p+q)+(p+q)-1][9] 0.0035321  1.0000
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3] 0.0001646 0.500 2.000  0.9898
ARCH Lag[5] 0.0004930 1.440 1.667  1.0000
ARCH Lag[7] 0.0032936 2.315 1.543  1.0000

Nyblom stability test
------------------------------------
Joint Statistic:  3.7551
Individual Statistics:             
omega  0.3142
alpha1 1.6889
beta1  0.2903
gamma1 1.7023

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.07 1.24 1.6
Individual Statistic:    0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias          0.16496 0.8690    
Negative Sign Bias 0.19577 0.8448    
Positive Sign Bias 0.17061 0.8646    
Joint Effect       0.07736 0.9944    


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     66.98    2.901e-07
2    30     89.45    4.416e-08
3    40     84.46    3.381e-05
4    50    108.76    2.002e-06


Elapsed time : 2.061266 


$`fit`[[3]]

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics   
-----------------------------------
GARCH Model : gjrGARCH(1,1)
Mean Model  : ARFIMA(0,0,0)
Distribution    : norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
omega   0.002290    0.001686   1.35806 0.174445
alpha1  0.033963    0.007582   4.47926 0.000007
beta1   0.966294    0.003796 254.58599 0.000000
gamma1 -0.002514    0.007508  -0.33489 0.737707

Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
omega   0.002290    0.002543   0.90055 0.367828
alpha1  0.033963    0.007854   4.32413 0.000015
beta1   0.966294    0.004485 215.46707 0.000000
gamma1 -0.002514    0.009729  -0.25844 0.796069

LogLikelihood : -1976.537 

Information Criteria
------------------------------------

Akaike       2.6855
Bayes        2.6998
Shibata      2.6855
Hannan-Quinn 2.6908

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic   p-value
Lag[1]                  4.856e-04 9.824e-01
Lag[2*(p+q)+(p+q)-1][2] 1.243e+01 4.364e-04
Lag[4*(p+q)+(p+q)-1][5] 3.929e+01 7.361e-11
d.o.f=0
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.5075  0.4762
Lag[2*(p+q)+(p+q)-1][5]    1.6769  0.6964
Lag[4*(p+q)+(p+q)-1][9]    4.2823  0.5417
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.5119 0.500 2.000  0.4743
ARCH Lag[5]    2.0544 1.440 1.667  0.4593
ARCH Lag[7]    3.8795 2.315 1.543  0.3643

Nyblom stability test
------------------------------------
Joint Statistic:  1.5558
Individual Statistics:              
omega  0.28550
alpha1 0.12862
beta1  0.18188
gamma1 0.09135

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:         1.07 1.24 1.6
Individual Statistic:    0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias          1.15840 0.24689    
Negative Sign Bias 1.72872 0.08407   *
Positive Sign Bias 0.03879 0.96906    
Joint Effect       3.23634 0.35660    


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     317.7    4.733e-56
2    30     345.8    6.180e-56
3    40     351.4    6.851e-52
4    50     339.5    4.331e-45


Elapsed time : 0.7231081 



$desc
$desc$`type`
[1] "equal"


$class
[1] "uGARCHmultifit"
attr(,"package")
[1] "rugarch"

当我检查姓名列表时,Information Criteria之后没有log.likelihoods之类的东西。与使用str()检查列表中的所有可用字符串相同。

> ## attributes of univariate stage 2
> names(attributes(attributes(attributes(fit)$mfit$ufit)[[1]][[1]])$fit)
 [1] "hessian"         "cvar"            "var"             "sigma"          
 [5] "condH"           "z"               "LLH"             "log.likelihoods"
 [9] "residuals"       "coef"            "robust.cvar"     "A"              
[13] "B"               "scores"          "se.coef"         "tval"           
[17] "matcoef"         "robust.se.coef"  "robust.tval"     "robust.matcoef" 
[21] "fitted.values"   "convergence"     "kappa"           "persistence"    
[25] "timer"           "ipars"           "solver"         
> names(attributes(attributes(attributes(fit)$mfit$ufit)[[1]][[2]])$fit)
 [1] "hessian"         "cvar"            "var"             "sigma"          
 [5] "condH"           "z"               "LLH"             "log.likelihoods"
 [9] "residuals"       "coef"            "robust.cvar"     "A"              
[13] "B"               "scores"          "se.coef"         "tval"           
[17] "matcoef"         "robust.se.coef"  "robust.tval"     "robust.matcoef" 
[21] "fitted.values"   "convergence"     "kappa"           "persistence"    
[25] "timer"           "ipars"           "solver"         
> names(attributes(attributes(attributes(fit)$mfit$ufit)[[1]][[3]])$fit)
 [1] "hessian"         "cvar"            "var"             "sigma"          
 [5] "condH"           "z"               "LLH"             "log.likelihoods"
 [9] "residuals"       "coef"            "robust.cvar"     "A"              
[13] "B"               "scores"          "se.coef"         "tval"           
[17] "matcoef"         "robust.se.coef"  "robust.tval"     "robust.matcoef" 
[21] "fitted.values"   "convergence"     "kappa"           "persistence"    
[25] "timer"           "ipars"           "solver"

2 个答案:

答案 0 :(得分:1)

您没有提供可复制的示例,因此该代码未经测试,但可能提供解决方案:

export FLASK_APP=faceParser
export FLASK_ENV=development
flask run

答案 1 :(得分:1)

我研究了源代码,以下代码为您提供了所需的信息:

object = fit
if(object@model$modelinc[1]>0){
  npvar = dim(object@model$varcoef)[1] * dim(object@model$varcoef)[2]
} else{
  npvar = 0
}
m = dim(object@model$modeldata$data)[2]
T = object@model$modeldata$T
itest = rugarch:::.information.test(object@mfit$llh, nObs = T, nPars =  npvar + (m^2 - m)/2 + length(object@mfit$matcoef[,1]))
itest$AIC