我是TensorflowJS和ML的新手。在API参考中,以下代码为there。
const model = tf.sequential();
// First layer must have an input shape defined.
model.add(tf.layers.dense({units: 32, inputShape: [50]}));
// Afterwards, TF.js does automatic shape inference.
model.add(tf.layers.dense({units: 4}));
// Inspect the inferred shape of the model's output, which equals
// `[null, 4]`. The 1st dimension is the undetermined batch dimension; the
// 2nd is the output size of the model's last layer.
console.log(JSON.stringify(model.outputs[0].shape));
我想知道的是,
什么是inputShape
?
什么是自动形状?
由于unit
引用了数据集的属性,为什么unit
在model.add(tf.layers.dense({units: 4}))
行中设置为4。 (该层在unit
中将model.add(tf.layers.dense({units: 32, inputShape: [50]}))
定义为32)由于sequential()
的一层输出是下一层的输入,因此单位必须相同?< / p>
答案 0 :(得分:2)
什么是
inputShape
?
它是一个包含张量尺寸的数组,在运行神经网络时用作输入。
什么是自动形状?
它之前只使用了图层的输出形状。在这种情况下[32]
,因为之前的图层是一个具有32个单位的密集图层。
由于单位是指数据集的属性,为什么单位设置为
model.add(tf.layers.dense({units: 4}))
行中的4。 (定义的图层 单位为model.add(tf.layers.dense({units: 32, inputShape: [50]})))
中的32,因为一层的连续()输出是输入 下一层,单位必须相同?
单位定义密集层的输出形状。在这种情况下,神经元应该有4个输出,所以最后一层必须有4个单位。输出和输入形状不必相同,因为每个神经元的输出(其数量是输出形状)是基于前一层的所有神经元(输出)计算的。 (如果是密集层)
答案 1 :(得分:-1)
我总是喜欢一个有效的例子。这是我能做的一个简单的例子。
我曾经在我的网站上找到超过50个TFJS示例的链接,但似乎放置链接被认为是垃圾邮件,所以我不会分享它。
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.10.3"> </script>
<input type="number" id="myAsk" value="5"><br>
<input id="myButton123" type="button" value="Keras Layers Train and Test" onclick="{
document.getElementById('myButton123').style.backgroundColor = 'red'
model = tf.sequential(); // no const so that it is a global variable
model.add(tf.layers.dense({ units: 10, inputShape: [1] }) );
model.add(tf.layers.dense({ units: 10 }) );
model.add(tf.layers.dense({ units: 1 }) );
model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
// Generate some synthetic data for training.
const xs = tf.tensor2d([[1], [2], [3], [4]], [4, 1]);
const ys = tf.tensor2d([[1], [3], [5], [7]], [4, 1]);
(async function () { // inline async so we can use promises and await
for (let myLoop = 1; myLoop <= 100; myLoop++) {
var myFit = await model.fit(xs, ys, { epochs: 10 });
if (myLoop % 20 == 0){
await tf.nextFrame(); // This allows the GUI to update but only every 20 batches
document.getElementById('myDiv123').innerHTML = 'Loss after Batch ' + myLoop + ' : ' + myFit.history.loss[0] +'<br><br>'
}
}
const myPredictArray = await model.predict(tf.tensor2d([document.getElementById('myAsk').value.split(',')], [1, 1]))
document.getElementById('myDiv123').innerHTML += 'Input '+document.getElementById('myAsk').value+', Output = ' + await myPredictArray.data() +'<br>'
document.getElementById('myButton123').style.backgroundColor = 'lightgray'
})() // end the inline async funciton
}" style="background-color: red;">
<input id="myButton123b" type="button" value="re-Test" onclick="{
(async function () {
const myPredictArray = await model.predict(tf.tensor2d([document.getElementById('myAsk').value.split(',')], [1, 1]))
document.getElementById('myDiv123').innerHTML = 'Input '+document.getElementById('myAsk').value+', Output = ' + await myPredictArray.data() +'<br>'
})() // end the inline async funciton
}"><br><br>
<div id='myDiv123'>...</div><br>