我按照opencv教程中的步骤进行操作:
它在这里对我不起作用。
任何人都可以帮我弄清楚为什么我不能得到那样的输出
import numpy as np
import cv2
cap = cv2.VideoCapture('Shorttest.mp4')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.imshow('frame',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()
答案 0 :(得分:0)
您显示所需结果的图像是通过opencv示例中的示例生成的,您可以在路径中找到它:samples / python2 / lk_track.py
#!/usr/bin/env python
'''
Lucas-Kanade tracker
====================
Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
for track initialization and back-tracking for match verification
between frames.
Usage
-----
lk_track.py [<video_source>]
Keys
----
ESC - exit
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
import video
from common import anorm2, draw_str
from time import clock
lk_params = dict( winSize = (15, 15),
maxLevel = 2,
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
feature_params = dict( maxCorners = 500,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
class App:
def __init__(self, video_src):
self.track_len = 10
self.detect_interval = 5
self.tracks = []
self.cam = video.create_capture(video_src)
self.frame_idx = 0
def run(self):
while True:
_ret, frame = self.cam.read()
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
vis = frame.copy()
if len(self.tracks) > 0:
img0, img1 = self.prev_gray, frame_gray
p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
good = d < 1
new_tracks = []
for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
if not good_flag:
continue
tr.append((x, y))
if len(tr) > self.track_len:
del tr[0]
new_tracks.append(tr)
cv.circle(vis, (x, y), 2, (0, 255, 0), -1)
self.tracks = new_tracks
cv.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))
if self.frame_idx % self.detect_interval == 0:
mask = np.zeros_like(frame_gray)
mask[:] = 255
for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
cv.circle(mask, (x, y), 5, 0, -1)
p = cv.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
if p is not None:
for x, y in np.float32(p).reshape(-1, 2):
self.tracks.append([(x, y)])
self.frame_idx += 1
self.prev_gray = frame_gray
cv.imshow('lk_track', vis)
ch = cv.waitKey(1)
if ch == 27:
break
def main():
import sys
try:
video_src = sys.argv[1]
except:
video_src = 0
print(__doc__)
App(video_src).run()
cv.destroyAllWindows()
if __name__ == '__main__':
main()
答案 1 :(得分:0)
光流估计可能导致效果不佳的原因有很多。考虑到您的具体问题,我首先关注的是:
你是否有太大的位移。这可能是因为帧速率低,或者物品快速移动或靠近相机。按像素/帧测量位移。对于每个金字塔等级,您只能希望用LK检测几个像素/帧。
你有运动模糊吗?不要与大位移相混淆。对于现实世界中的大型运动,物品沿运动方向变得模糊。
阴影和反射。更大类问题的一部分:未通过&#34;亮度恒定约束的数据&#34; (一个点必须在帧与帧之间显示相同,尽管它的位置不同)。查看您的数据并确保自己的位置实际上看起来一样。如果使用稀疏流,则可以检查特征检测模块在每个帧上的执行情况。相同的点应该倾向于作为跟踪的好特征弹出。
你有多个动作吗?例如,这是汽车相互移动的时候。也不好。
有一些方法可以解决所有这些问题,但需要为自己的工程项目做好准备。