在我的情况下,OpenCV StereoBM Depth Map返回的数据没有意义,无论参数调整如何。
我正在研究涉及OpenCV并使用立体视觉生成深度图的设计项目。我目前成功地加载了我的网络摄像头并使用StereoBM生成深度图。但是,结果数据目前并不有用,因为我的屏幕截图如下所示。所以我创建了一个小python应用程序,帮助我调整StereoBM参数,这些参数没有帮助。
我的问题是必须校准相机以便与StereoBM功能一起使用吗?
如果没有,有哪些替代方案可以帮助我提高结果(即提高分辨率,使用StereoSBGM等)
代码
import cv2
import time
import numpy as np
from Tkinter import *
oldVal = 15
def oddVals(n):
global oldVal
n = int(n)
if not n % 2:
window_size.set(n+1 if n > oldVal else n-1)
oldVal = window_size.get()
minDispValues = [16,32,48,64]
def minDispCallback(n):
n = int(n)
newvalue = min(minDispValues, key=lambda x:abs(x-float(n)))
min_disp.set(newvalue)
# Display the sliders to control the stereo vision
master = Tk()
master.title("StereoBM Settings");
min_disp = Scale(master, from_=16, to=64, command=minDispCallback, length=600, orient=HORIZONTAL, label="Minimum Disparities")
min_disp.pack()
min_disp.set(16)
window_size = Scale(master, from_=5, to=255, command=oddVals, length=600, orient=HORIZONTAL, label="Window Size")
window_size.pack()
window_size.set(15)
Disp12MaxDiff = Scale(master, from_=5, to=30, length=600, orient=HORIZONTAL, label="Max Difference")
Disp12MaxDiff.pack()
Disp12MaxDiff.set(0)
UniquenessRatio = Scale(master, from_=0, to=30, length=600, orient=HORIZONTAL, label="Uniqueness Ratio")
UniquenessRatio.pack()
UniquenessRatio.set(15)
SpeckleRange = Scale(master, from_=0, to=60, length=600, orient=HORIZONTAL, label="Speckle Range")
SpeckleRange.pack()
SpeckleRange.set(34)
SpeckleWindowSize = Scale(master, from_=60, to=150, length=600, orient=HORIZONTAL, label="Speckle Window Size")
SpeckleWindowSize.pack()
SpeckleWindowSize.set(100)
master.update()
vcLeft = cv2.VideoCapture(0) # Load video campture for the left camera
#vcLeft.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH,420);
#vcLeft.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,340);
vcLeft.set(3,640) # Set camera width
vcLeft.set(4,480) # Set camera height
vcRight = cv2.VideoCapture(1) # Load video capture for the right camera
#vcRight.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH,420);
#vcRight.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,340);
firstTime = time.time() # First time log
totalFramesPassed = 0 # Number of frames passed
if vcLeft.isOpened() and vcRight.isOpened():
rvalLeft, frameLeft = vcLeft.read()
rvalRight, frameRight = vcRight.read()
else:
rvalLeft = False
rvalRight = False
while rvalLeft and rvalRight: # If the cameras are opened
rvalLeft, frameLeft = vcLeft.read()
rvalRight, frameRight = vcRight.read()
cv2.putText(frameLeft, "FPS : " + str(totalFramesPassed / (time.time() - firstTime)),(40, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.8, 150, 2, 10)
cv2.imshow("Left Camera", frameLeft)
cv2.putText(frameRight, "FPS : " + str(totalFramesPassed / (time.time() - firstTime)),(40, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.8, 150, 2, 10)
cv2.imshow("Right Camera", frameRight)
frameLeftNew = cv2.cvtColor(frameLeft, cv2.COLOR_BGR2GRAY)
frameRightNew = cv2.cvtColor(frameRight, cv2.COLOR_BGR2GRAY)
num_disp = 112 - min_disp.get()
stereo = cv2.StereoBM_create(numDisparities = num_disp, blockSize = window_size.get())
stereo.setMinDisparity(min_disp.get())
stereo.setNumDisparities(num_disp)
stereo.setBlockSize(window_size.get())
stereo.setDisp12MaxDiff(Disp12MaxDiff.get())
stereo.setUniquenessRatio(UniquenessRatio.get())
stereo.setSpeckleRange(SpeckleRange.get())
stereo.setSpeckleWindowSize(SpeckleWindowSize.get())
disparity = stereo.compute(frameLeftNew, frameRightNew).astype(np.float32) / 16.0
disp_map = (disparity - min_disp.get())/num_disp
cv2.imshow("Disparity", disp_map)
master.update() # Update the slider options
key = cv2.waitKey(20)
totalFramesPassed = totalFramesPassed + 1 # One frame passed, increment
if key == 27:
break
vcLeft.release()
vcRight.release()
答案 0 :(得分:0)
正如StereoBM opencv stereoBM doc的opencv文档中所述,这两个图像需要是“整流的立体声对”。
这意味着在计算差异之前,您需要纠正两个摄像头。
在计算差异之前,请查看stereo_match,了解如何纠正这两个摄像头。
当您使用stereoBM计算视差时,您正在查看两个图像中的并行极线的对应关系。 这意味着期望图像以这样的距离对齐,使得两个图像中的相同行对应于空间中的相同行。整改过程负责这一点。
有关详细信息,请查看Rectification with opencv
答案 1 :(得分:0)
我发现我们需要纠正这对以便使用StereoBM功能。此外,我发现虽然资源密集程度更高,但StereoSGBM功能给了我更优的结果。
如果将来有人需要校准他们的相机,您可以使用此代码来帮助您这样做:
# Imports
import cv2
import numpy as np
# Constants
leftCameraNumber = 2 # Number for left camera
rightCameraNumber = 1 # Number for right camera
numberOfChessRows = 6
numberOfChessColumns = 8
chessSquareSize = 30 # Length of square in millimeters
numberOfChessColumns = numberOfChessColumns - 1 # Update to reflect how many corners are inside the chess board
numberOfChessRows = numberOfChessRows - 1
objp = np.zeros((numberOfChessColumns*numberOfChessRows,3), np.float32)
objp[:,:2] = np.mgrid[0:numberOfChessRows,0:numberOfChessColumns].T.reshape(-1,2)*chessSquareSize
objectPoints = []
leftImagePoints = []
rightImagePoints = []
parameterCriteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Code
print("Press \"n\" when you're done caputing checkerboards.")
vcLeft = cv2.VideoCapture(leftCameraNumber) # Load video campture for the left camera
vcLeft.set(cv2.CAP_PROP_FRAME_WIDTH,640*3/2);
vcLeft.set(cv2.CAP_PROP_FRAME_HEIGHT,480*3/2);
vcRight = cv2.VideoCapture(rightCameraNumber) # Load video capture for the right camera
vcRight.set(cv2.CAP_PROP_FRAME_WIDTH,640*3/2);
vcRight.set(cv2.CAP_PROP_FRAME_HEIGHT,480*3/2);
if vcLeft.isOpened() and vcRight.isOpened():
rvalLeft, frameLeft = vcLeft.read()
rvalRight, frameRight = vcRight.read()
else:
rvalLeft = False
rvalRight = False
# Number of succesful recognitions
checkerboardRecognitions = 0
while rvalLeft and rvalRight: # If the cameras are opened
vcLeft.grab();
vcRight.grab();
rvalLeft, frameLeft = vcLeft.retrieve()
rvalRight, frameRight = vcRight.retrieve()
frameLeftNew = cv2.cvtColor(frameLeft, cv2.COLOR_BGR2GRAY)
frameRightNew = cv2.cvtColor(frameRight, cv2.COLOR_BGR2GRAY)
foundPatternLeft, cornersLeft = cv2.findChessboardCorners(frameLeftNew, (numberOfChessRows, numberOfChessColumns), None, cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_NORMALIZE_IMAGE + cv2.CALIB_CB_FAST_CHECK)
foundPatternRight, cornersRight = cv2.findChessboardCorners(frameRightNew, (numberOfChessRows, numberOfChessColumns), None, cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_NORMALIZE_IMAGE + cv2.CALIB_CB_FAST_CHECK)
if foundPatternLeft and foundPatternRight: # If found corners in this frame
# Process the images and display the count of checkboards in our array
checkerboardRecognitions = checkerboardRecognitions + 1
print("Checker board recognitions: " + str(checkerboardRecognitions))
objectPoints.append(objp)
exactCornersLeft = cv2.cornerSubPix(frameLeftNew, cornersLeft, (11, 11), (-1, -1), parameterCriteria);
leftImagePoints.append(exactCornersLeft)
exactCornersRight = cv2.cornerSubPix(frameRightNew, cornersRight, (11, 11), (-1, -1), parameterCriteria);
rightImagePoints.append(exactCornersRight)
frameLeft = cv2.drawChessboardCorners(frameLeft, (numberOfChessRows, numberOfChessColumns), (exactCornersLeft), True);
frameRight = cv2.drawChessboardCorners(frameRight, (numberOfChessRows, numberOfChessColumns), (exactCornersRight), True);
# Display current webcams regardless if board was found or not
cv2.imshow("Left Camera", frameLeft)
cv2.imshow("Right Camera", frameRight)
key = cv2.waitKey(250) # Give the frame some time
if key == ord('n'):
break
cameraMatrixLeft = np.zeros( (3,3) )
cameraMatrixRight = np.zeros( (3,3) )
distortionLeft = np.zeros( (8,1) )
distortionRight = np.zeros( (8,1) )
height, width = frameLeft.shape[:2]
rms, leftMatrix, leftDistortion, rightMatrix, rightDistortion, R, T, E, F = cv2.stereoCalibrate(objectPoints, leftImagePoints, rightImagePoints, cameraMatrixLeft, distortionLeft, cameraMatrixRight, distortionRight, (width, height),parameterCriteria, flags=0)
arr1 = np.arange(8).reshape(2, 4)
arr2 = np.arange(10).reshape(2, 5)
np.savez('camera_calibration.npz', leftMatrix=leftMatrix, leftDistortion=leftDistortion, rightMatrix=rightMatrix, rightDistortion=rightDistortion, R=R, T=T, E=E, F=F)
print("Calibration Settings Saved to File!")
print("RMS:")
print(rms)
print("Left Matrix:")
print(leftMatrix)
print("Left Distortion:")
print(leftDistortion)
print("Right Matrix:")
print(rightMatrix)
print("Right Distortion:")
print(rightDistortion)
print("R:")
print(R)
print("T:")
print(T)
print("E:")
print(E)
print("F:")
print(F)
leftRectTransform, rightRectTransform, leftProjMatrix, rightProjMatrix, _, _, _ = cv2.stereoRectify(leftMatrix, leftDistortion, rightMatrix, rightDistortion, (width, height), R, T, alpha=-1);
leftMapX, leftMapY = cv2.initUndistortRectifyMap(leftMatrix, leftDistortion, leftRectTransform, leftProjMatrix, (width, height), cv2.CV_32FC1);
rightMapX, rightMapY = cv2.initUndistortRectifyMap(rightMatrix, rightDistortion, rightRectTransform, rightProjMatrix, (width, height), cv2.CV_32FC1);
minimumDisparities = 0
maximumDisparities = 128
stereo = cv2.StereoSGBM_create(minimumDisparities, maximumDisparities, 18)
while True: # If the cameras are opened
vcLeft.grab();
vcRight.grab();
rvalLeft, frameLeft = vcLeft.retrieve()
rvalRight, frameRight = vcRight.retrieve()
frameLeftNew = cv2.cvtColor(frameLeft, cv2.COLOR_BGR2GRAY)
frameRightNew = cv2.cvtColor(frameRight, cv2.COLOR_BGR2GRAY)
leftRectified = cv2.remap(frameLeftNew, leftMapX, leftMapY, cv2.INTER_LINEAR);
rightRectified = cv2.remap(frameRightNew, rightMapX, rightMapY, cv2.INTER_LINEAR);
disparity = stereo.compute(leftRectified, rightRectified)
cv2.filterSpeckles(disparity, 0, 6000, maximumDisparities);
cv2.imshow("Normalized Disparity", (disparity/16.0 - minimumDisparities)/maximumDisparities);
cv2.imshow("Left Camera", leftRectified)
cv2.imshow("Right Camera", rightRectified)
key = cv2.waitKey(10) # Give the frame some time
if key == 27:
break
print("Finished!")