我试图找到最适合malus法则。
I_measured=I_0*(cos(theta)) ^2
当我分散绘图时,它显然有效但是使用def form()
函数我得到下面给出的错误。
我用Google搜索了问题,似乎这不是曲线拟合余弦函数的正确方法。
给定数据是..
x_data = x1,位于以下代码中
[ 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 55.0,
60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, 105.0, 110.0, 115.0,
120.0, 125.0, 130.0, 135.0, 140.0, 145.0, 150.0, 155.0, 160.0, 165.0,
170.0, 175.0, 180.0, 185.0, 190.0, 195.0, 200.0, 205.0, 210.0, 215.0,
220.0, 225.0, 230.0, 235.0, 240.0, 245.0, 250.0, 255.0, 260.0, 265.0,
270.0, 275.0, 280.0, 285.0, 290.0, 295.0, 300.0, 305.0, 310.0, 315.0,
320.0, 325.0, 330.0, 335.0, 340.0, 345.0, 350.0, 355.0, 360.0]
y_data = x2,位于以下代码中
[ 1.69000000e-05 2.80000000e-05 4.14000000e-05 5.89000000e-05
7.97000000e-05 9.79000000e-05 1.23000000e-04 1.47500000e-04
1.69800000e-04 1.94000000e-04 2.17400000e-04 2.40200000e-04
2.55400000e-04 2.70500000e-04 2.81900000e-04 2.87600000e-04
2.91500000e-04 2.90300000e-04 2.83500000e-04 2.76200000e-04
2.62100000e-04 2.41800000e-04 2.24200000e-04 1.99500000e-04
1.74100000e-04 1.49300000e-04 1.35600000e-04 1.11500000e-04
9.00000000e-05 6.87000000e-05 4.98000000e-05 3.19000000e-05
2.07000000e-05 1.31000000e-05 9.90000000e-06 1.03000000e-05
1.49000000e-05 2.34000000e-05 3.65000000e-05 5.58000000e-05
7.56000000e-05 9.65000000e-05 1.19400000e-04 1.46900000e-04
1.73000000e-04 1.99200000e-04 2.24600000e-04 2.38700000e-04
2.60700000e-04 2.74800000e-04 2.84000000e-04 2.91200000e-04
2.93400000e-04 2.90300000e-04 2.86400000e-04 2.77900000e-04
2.63600000e-04 2.45900000e-04 2.25500000e-04 2.03900000e-04
1.79100000e-04 1.51800000e-04 1.32400000e-04 1.07000000e-04
8.39000000e-05 6.20000000e-05 4.41000000e-05 3.01000000e-05
1.93000000e-05 1.24000000e-05 1.00000000e-05 1.13000000e-05
1.77000000e-05]
代码
I_0=291,5*10**-6/(pi*0.35**2) # print(I_0) gives (291, 1.2992240252399621e-05)??
def form(theta, I_0):
return (I_0*(np.abs(np.cos(theta)))**2) # theta is x_data
param=I_0
parame,covariance= optimize.curve_fit(form,x1,x2,I_0)
test=parame*I_0
#print(parame)
#plt.scatter(x1,x2,label='data')
plt.ylim(10**-5,3*10**-4)
plt.plot(x1,form(x1,*parame),'b--',label='fitcurve')
我得到的错误是:
TypeError:form()需要2个位置参数,但3个被赋予`
我又开始使用下面显示的其他代码。
x1=np.radians(np.array(x1))
x2=np.array(x2)*10**-6
print(x1,x2)
def form(theta, I_0, theta0, offset):
return I_0 * np.cos(np.radians(theta - theta0)) ** 2 + offset
param, covariance = optimize.curve_fit(form, x1, x2)
plt.scatter(x1, x2, label='data')
plt.ylim(0, 3e-4)
plt.xlim(0, 360)
plt.plot(x1, form(x1, *param), 'b-')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
plt.axes().xaxis.set_major_locator(ticker.MultipleLocator(45))
plt.show()
在新代码中。我将输入数组乘以数字..基本上它仍然是第一个代码中的y_data。当我绘制这个时,我看到该函数根本不适合添加代码x1 = np.radians(np.array(x1))
答案 0 :(得分:3)
我猜你的I_0=291,5*10**-6/(pi*0.35**2)
应该是适合的初始猜测。我不知道为什么这么复杂。使用,
作为小数分隔符是Python中的错误语法,而是使用.
。此外,您可以编写123.4 * 10 ** -5
(科学记数法),而不是123.4e-5
之类的内容。
无论如何,事实证明,如果你正确地进行拟合,你甚至不需要指定初始猜测。
在您的模型函数中,I_measured = I_0 * cos(theta)**2
,theta
以弧度(0到2π)为单位,但您的x
值以度为单位(0到360)。
您的模型函数未考虑x
或y
值中的任何偏移量。您应该在函数中包含这些参数。
改进的模型函数如下所示:
def form(theta, I_0, theta0, offset):
return I_0 * np.cos(np.radians(theta - theta0)) ** 2 + offset
(Martin Evans指出np.radians
功能的说法。)
现在curve_fit
函数能够为您的测量数据推导出最适合模型函数的I_0
,theta0
和offset
的值:
>>> param, covariance = optimize.curve_fit(form, x, y)
>>> print 'I_0: {0:e} / theta_0: {1} degrees / offset: {2:e}'.format(*param)
I_0: -2.827996e-04 / theta_0: -9.17118424279 degrees / offset: 2.926534e-04
情节也很不错:
import matplotlib.ticker as ticker
plt.scatter(x, y, label='data')
plt.ylim(0, 3e-4)
plt.xlim(0, 360)
plt.plot(x, form(x, *param), 'b-')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
plt.axes().xaxis.set_major_locator(ticker.MultipleLocator(45))
plt.show()
(你的x
值从0到360,我不知道为什么你将绘图限制设置为370.另外,我以45度的间隔间隔刻度线。)
更新:拟合产生负幅度I_0
,偏移量约为3e-4
,接近最大y
值。您可以通过提供90度的初始相位偏移来引导拟合到正幅度和偏移接近零(“翻转”):
>>> param, covariance = optimize.curve_fit(form, x, y, [3e-4, 90, 0])
>>> print 'I_0: {0:e} / theta_0: {1} degrees / offset: {2:e}'.format(*param)
I_0: 2.827996e-04 / theta_0: 80.8288157578 degrees / offset: 9.853833e-06
答案 1 :(得分:1)
你的公式中的逗号是创建一个两个对象元组,它没有指定“千元”,因此,你应该删除它给你:
I_O = 0.00757447606715
这里的目的是提供一个可以适应您的数据的功能。您的原始函数仅提供了一个参数,这不足以使curve_fit()
更合适。
为了更好地适应,您需要为func()
创建更多变量,以使曲线装配器更具灵活性。在这种情况下,对于cos波,它为幅度提供I_O
,为theta0
提供yoffset
。
所以代码是:
import matplotlib.pyplot as plt
from math import pi
from scipy import optimize
import numpy as np
x1 = [ 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 55.0,
60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, 105.0, 110.0, 115.0,
120.0, 125.0, 130.0, 135.0, 140.0, 145.0, 150.0, 155.0, 160.0, 165.0,
170.0, 175.0, 180.0, 185.0, 190.0, 195.0, 200.0, 205.0, 210.0, 215.0,
220.0, 225.0, 230.0, 235.0, 240.0, 245.0, 250.0, 255.0, 260.0, 265.0,
270.0, 275.0, 280.0, 285.0, 290.0, 295.0, 300.0, 305.0, 310.0, 315.0,
320.0, 325.0, 330.0, 335.0, 340.0, 345.0, 350.0, 355.0, 360.0]
x2 = [ 1.69000000e-05, 2.80000000e-05, 4.14000000e-05, 5.89000000e-05,
7.97000000e-05, 9.79000000e-05, 1.23000000e-04, 1.47500000e-04,
1.69800000e-04, 1.94000000e-04, 2.17400000e-04, 2.40200000e-04,
2.55400000e-04, 2.70500000e-04, 2.81900000e-04, 2.87600000e-04,
2.91500000e-04, 2.90300000e-04, 2.83500000e-04, 2.76200000e-04,
2.62100000e-04, 2.41800000e-04, 2.24200000e-04, 1.99500000e-04,
1.74100000e-04, 1.49300000e-04, 1.35600000e-04, 1.11500000e-04,
9.00000000e-05, 6.87000000e-05, 4.98000000e-05, 3.19000000e-05,
2.07000000e-05, 1.31000000e-05, 9.90000000e-06, 1.03000000e-05,
1.49000000e-05, 2.34000000e-05, 3.65000000e-05, 5.58000000e-05,
7.56000000e-05, 9.65000000e-05, 1.19400000e-04, 1.46900000e-04,
1.73000000e-04, 1.99200000e-04, 2.24600000e-04, 2.38700000e-04,
2.60700000e-04, 2.74800000e-04, 2.84000000e-04, 2.91200000e-04,
2.93400000e-04, 2.90300000e-04, 2.86400000e-04, 2.77900000e-04,
2.63600000e-04, 2.45900000e-04, 2.25500000e-04, 2.03900000e-04,
1.79100000e-04, 1.51800000e-04, 1.32400000e-04, 1.07000000e-04,
8.39000000e-05, 6.20000000e-05, 4.41000000e-05, 3.01000000e-05,
1.93000000e-05, 1.24000000e-05, 1.00000000e-05, 1.13000000e-05,
1.77000000e-05]
x1 = np.radians(np.array(x1))
x2 = np.array(x2)
def form(theta, I_0, theta0, offset):
return I_0 * np.cos(theta - theta0) ** 2 + offset
param, covariance = optimize.curve_fit(form, x1, x2)
plt.scatter(x1, x2, label='data')
plt.ylim(x2.min(), x2.max())
plt.plot(x1, form(x1, *param), 'b-')
plt.show()
给你一个输出:
数学库以弧度工作,因此您的数据需要在某个点(2pi == 360度)转换为弧度。您可以将数据转换为弧度,也可以在函数内执行转换。
还要感谢mkrieger1提供额外的参数。