我需要编写一个算法,它可以将数字表示为素数的最小和:
例如: 8 - > [2,2,2,2],[3,5],[2,3,3] 我需要得到min = this => 2
我已编写代码,但需要花费大量时间,因为它包含递归。如何更改它以改善时间?
import sys
x = int(sys.stdin.readline())
def is_prime(n):
for i in range(2, n):
if n % i == 0:
return False
return True
def decomposition(x):
result = []
for a in range(2, int(x/2 + 1)):
if x-a >= 2:
b = x - a
pair = [a, b]
result.append(pair)
return result
def f(elem):
list_of_mins = []
if is_prime(elem) == True:
return 1
else:
pairs = decomposition(elem)
print(pairs)
for a,b in pairs:
list_of_mins.append(f(a)+f(b))
return min(list_of_mins)
if str(int(x)).isdigit() and 2 <= int(x) <= 10 ** 9:
sum = []import sys
x = int(sys.stdin.readline())
def is_prime(n):
for i in range(2, n):
if n % i == 0:
return False
return True
def decomposition(x):
result = []
for a in range(2, int(x/2 + 1)):
if x-a >= 2:
b = x - a
pair = [a, b]
result.append(pair)
return result
def f(elem):
list_of_mins = []
if is_prime(elem) == True:
return 1
else:
pairs = decomposition(elem)
print(pairs)
for a,b in pairs:
list_of_mins.append(f(a)+f(b))
return min(list_of_mins)
if str(int(x)).isdigit() and 2 <= int(x) <= 10 ** 9:
sum = []
print(f(x))
答案 0 :(得分:0)
你的is_prime函数只需要测试除数为pow(n,0.5)+1的除数。这意味着您的代码将是:
def is_prime(n):
for i in range(2, int(pow(n, 0.5)+1):
if n % i == 0:
return False
return True
这可以显着提高您的算法速度。
答案 1 :(得分:0)
这是一个可能的解决方案:
import math
class Foo():
def __init__(self, n):
self.n = n
self.primes = self.prime_sieve(n)
def prime_sieve(self, sieve_size):
sieve = [True] * sieve_size
sieve[0] = False
sieve[1] = False
for i in range(2, int(math.sqrt(sieve_size)) + 1):
pointer = i * 2
while pointer < sieve_size:
sieve[pointer] = False
pointer += i
primes = []
for i in range(sieve_size):
if sieve[i] == True:
primes.append(i)
return primes
def sum_to_n(self, n, size, limit=None):
if size == 1:
yield [n]
return
if limit is None:
limit = n
start = (n + size - 1) // size
stop = min(limit, n - size + 1) + 1
for i in range(start, stop):
for tail in self.sum_to_n(n - i, size - 1, i):
yield [i] + tail
def possible_sums(self):
for i in range(2, self.n):
result = list(self.sum_to_n(self.n, i))
result = (
[v for v in result if all([(p in self.primes) for p in v])])
if result:
yield result
def result(self):
for i in self.possible_sums():
return i
raise Exception("Not available result!")
if __name__ == '__main__':
obj = Foo(8)
print(list(obj.possible_sums()))
print('-' * 80)
try:
v = obj.result()
print("{} , length = {}".format(v[0], len(v[0])))
except Exception as e:
print(e)
结果:
[[[5, 3]], [[3, 3, 2]], [[2, 2, 2, 2]]]
--------------------------------------------------------------------------------
[5, 3] , length = 2