我试图将pcl :: pointcloud的平面部分转换为二进制图像。我发现了一个名为savePNGFile的类,但是我的程序效果不佳。
到目前为止,我做了一个ROI选择器和一个强度滤镜来获得我想要的点。
void regionOfInterest(VPointCloud::Ptr cloud_in, double x1, double x2,
double y1, double y2, double z)
{
for (VPoint& point: cloud_in->points)
if ((z > point.z) && (y1 > point.y) && (y2 < point.y) && (x1 > point.x)
&&(x2 < point.x))
cloud_out->points.push_back(point);
}
(VPointCloud是我需要使用我的数据的那种pointcloud) 我知道也许我在那里显示的那段代码不相关,但它可以或多或少地显示我使用的类型。
有人知道如何将此pointcloud导出为二进制图像吗?完成此步骤后,我将使用OpenCV。
谢谢
答案 0 :(得分:0)
此方法适用于有组织或无组织的数据。但是,您可能需要旋转输入点云平面,使其与两个正交维度平行,并且您知道要删除的维度。 stepSize1和stepSize2是用于设置点云的大小变为新图像中的像素的参数。这将根据点密度计算灰度图像,但可以轻松修改以显示深度或其他信息。一个简单的阈值也可用于使图像二进制。
cv::Mat makeImageFromPointCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, std::string dimensionToRemove, float stepSize1, float stepSize2)
{
pcl::PointXYZI cloudMin, cloudMax;
pcl::getMinMax3D(*cloud, cloudMin, cloudMax);
std::string dimen1, dimen2;
float dimen1Max, dimen1Min, dimen2Min, dimen2Max;
if (dimensionToRemove == "x")
{
dimen1 = "y";
dimen2 = "z";
dimen1Min = cloudMin.y;
dimen1Max = cloudMax.y;
dimen2Min = cloudMin.z;
dimen2Max = cloudMax.z;
}
else if (dimensionToRemove == "y")
{
dimen1 = "x";
dimen2 = "z";
dimen1Min = cloudMin.x;
dimen1Max = cloudMax.x;
dimen2Min = cloudMin.z;
dimen2Max = cloudMax.z;
}
else if (dimensionToRemove == "z")
{
dimen1 = "x";
dimen2 = "y";
dimen1Min = cloudMin.x;
dimen1Max = cloudMax.x;
dimen2Min = cloudMin.y;
dimen2Max = cloudMax.y;
}
std::vector<std::vector<int>> pointCountGrid;
int maxPoints = 0;
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> grid;
for (float i = dimen1Min; i < dimen1Max; i += stepSize1)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr slice = passThroughFilter1D(cloud, dimen1, i, i + stepSize1);
grid.push_back(slice);
std::vector<int> slicePointCount;
for (float j = dimen2Min; j < dimen2Max; j += stepSize2)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr grid_cell = passThroughFilter1D(slice, dimen2, j, j + stepSize2);
int gridSize = grid_cell->size();
slicePointCount.push_back(gridSize);
if (gridSize > maxPoints)
{
maxPoints = gridSize;
}
}
pointCountGrid.push_back(slicePointCount);
}
cv::Mat mat(static_cast<int>(pointCountGrid.size()), static_cast<int>(pointCountGrid.at(0).size()), CV_8UC1);
mat = cv::Scalar(0);
for (int i = 0; i < mat.rows; ++i)
{
for (int j = 0; j < mat.cols; ++j)
{
int pointCount = pointCountGrid.at(i).at(j);
float percentOfMax = (pointCount + 0.0) / (maxPoints + 0.0);
int intensity = percentOfMax * 255;
mat.at<uchar>(i, j) = intensity;
}
}
return mat;
}
pcl::PointCloud<pcl::PointXYZ>::Ptr passThroughFilter1D(const pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, const std::string field, const double low, const double high, const bool remove_inside)
{
if (low > high)
{
std::cout << "Warning! Min is greater than max!\n";
}
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZI>);
pcl::PassThrough<pcl::PointXYZI> pass;
pass.setInputCloud(cloud);
pass.setFilterFieldName(field);
pass.setFilterLimits(low, high);
pass.setFilterLimitsNegative(remove_inside);
pass.filter(*cloud_filtered);
return cloud_filtered;
}