计算a [i]的数量的有效算法&lt; a [j]&gt; a [k]其中i < j&lt; k在一个数组中

时间:2017-07-18 06:05:57

标签: algorithm tuples

给定一个包含n个元素的未排序数组,如何计算数组中出现次数,i < j < ka[i] < a[j] > a[k]时间复杂度O(n log n)。如果可以提高时间复杂度,请告诉我。 我推出了时间复杂度O(n^3)的算法,它处理大的n值时速度太慢。

 count = 0; // count for number of tuples following above condition
    for(i = 0;i < n; i++)
        for(j = i + 1;j < n; j++)
            for(k = j + 1;k < n; k++)
                if(a[i] < a[j] && a[j] > a[k]) 
                   count++;

for example we have an array [1, 2, 3, 1].
Now such occurrences are in index form(0 - based indexing)
[0 1 3]
[0 2 3]
[1 2 3].

1 个答案:

答案 0 :(得分:1)

执行在线算法,将整数添加到集合中并二进制搜索小于当前整数的整数数量A[j]

在正常方向做一次,反向做一次,这样对于每个A[j],你可以存储整数&lt;位于A[j]之前/之后的j

答案是所有j

的乘积之和

&#13;
&#13;
Set<int> st, reverse_st;
int arr[N], reverse_arr[N];
int A[N], ans = 0;

FOR j = 0 to N-1
  arr[j] = # of element in st < A[j], using binary search // O(lg N)
  Insert A[j] into st // O(lg N)

FOR j = N-1 to 0
  reverse_arr[j] = # of element in reverse_st < A[j], using binary search
  Insert A[j] into reverse_st
  
FOR i = 0 to N-1
  ans += arr[i] * reverse_arr[i]

Output ans
&#13;
&#13;
&#13;

使用您的示例A = [1,2,3,1]

arr = [0,1,2,0],reverse_arr = [0,1,1,0]

ans = 1 * 1 + 2 * 1 = 3