如何显示↔≡∨→(∧)
到目前为止,我已经完成了这个......
↔≡(p→q)∧(q→p)代数定律
(p→q)∧(q→p)≡(~p V q)∧(q→p)条件命题法则
(~p V q)∧(q→p)≡(~p V q)∧(~q V p)条件命题定律
答案 0 :(得分:4)
根据身份法:
p ↔ q Given (p → q) & (q → p) ↔ Elimination (~p ∨ q) & (~q ∨ p) Material implication ((~p ∨ q) & ~q) ∨ (((~p ∨ q) & p)) Distributive ~p & ~q ∨ q & ~q ∨ ~p & p ∨ q & p Distributive ~p & ~q ∨ F ∨ F ∨ q & p Complement ~p & ~q ∨ q & p Identity ~(p ∨ q) ∨ p & q De Morgan's law (p ∨ q) → (p & q) Material implication
自然扣除:
要通过自然扣除来证明身份,您必须在两个方向上进行证明。也就是说,你必须证明这两点:
{1} 1. p ↔ q Prem. {1} 2. (p → q) & (q → p) 1 ↔E {1} 3. p → q 2 &E {1} 4. q → p 2 &E {5} 5. p ∨ q Assum. {6} 6. p Assum. (1st Disj.) {1,6} 7. q 3,6 MP {1,6} 8. p & q 6,7 &I (1st Conc.) {9} 9. q Assum. (2nd Disj.) {1,9} 10. p 4,9 MP {1,9} 11. p & q 9,10 &I (2nd Conc.) {1,5} 12. p & q 5,6,8,9,11 ∨E {1} 14. (p ∨ q) → (p & q) 5,12 CP
以下是相反方向的证据:
{1} 1. (p ∨ q) → (p & q) Prem. {2} 2. p Assum. {2} 3. p ∨ q 2 ∨I {1,2} 4. p & q 1,3 MP {1,2} 5. q 4 &E {1} 6. p → q 2,5 CP {7} 7. q Assum. {7} 8. p ∨ q 7 ∨I {1,7} 9. p & q 1,8 MP {1,7} 10. p 9 &E {1} 11. q → p 7,10 CP {1} 12. (p → q) & (q → p) 6,12 &I {1} 13. p ↔ q 12 ↔I
<强>缩写:强>