R中缺失和删失数据的多重插补

时间:2017-05-07 03:02:29

标签: r missing-data imputation

我有一个包含随机丢失(MAR)和删失数据的数据集。变量是相关的,我试图有条件地估算缺失的数据,以便我可以估计相关的多元正态分布的分布参数。我想使用Gibbs MCMC,但是我很难实现这个程序。我的数据框有5个变量(表示为x1:x5),1099个样本包含MAR,删失和观察值的某种组合。这是我到目前为止所尝试的:

# packages
library(msm, tmvtnorm, MCMCpack)

# priors 
theta0<-c(rep(0, 5))
Sigma0<-S0<-diag(5)  
nu0<-4 

# initialize parameters
theta<-c(rep(0, 5))
Tau<-diag(5) 

# initialize output matrix
n_samples <- 1000
mu_MCMC <- matrix(0, nrow = n_samples, ncol = 5)
mu_MCMC[1,] <- theta
cov_MCMC <- matrix(0, nrow = n_samples, ncol = 25)
cov_MCMC[1,] <- c(diag(5))

# detection limits
det_lim <- matrix(c(-1.7, 0, 0, 0, 0), nrow = 1, ncol = 5)

# function to detect NaN (i.e., below detection data)
is.nan.data.frame <- function(x)
    do.call(cbind, lapply(x, is.nan))

for(i in 2:n_samples){
    imputedDF <- data.frame()
    for(r in 1:nrow(originalDF)){
        # variables that are MAR or censored
        mis <- r[, is.na(r) & is.nan(r)]    
        # variables that are observed
        obs <- r[, !is.na(r)]

        # subset mu for missing, observed
        mu1 <- mu[, names(r) %in% names(mis)]
        mu2 <- mu[, names(r) %in% names(obs)]

        # calculate sigmas for MVN partitions of mis, obs
        sigma11 <- sigma[names(r) %in% names(mis), names(r) %in% names(mis)]
        sigma22 <- sigma[names(r) %in% names(obs), names(r) %in% names(obs)]
        sigma12 <- sigma[names(r) %in% names(obs), names(r) %in% names(mis)]
        sigma21 <- t(sigma12)

        # create matrix for detection limits based on missing values
        ## if NaN, use detection limit; if NA use Inf
        dl <- c(ifelse("x1" %in% names(is.nan(r)), det_lim[1, "x1"], Inf), 
                ifelse("x2" %in% names(is.nan(r)), det_lim[1, "x2"], Inf), 
                ifelse("x3" %in% names(is.nan(r)), det_lim[1, "x3"], Inf), 
                ifelse("x4" %in% names(is.nan(r)), det_lim[1, "x4"], Inf), 
                ifelse("x5" %in% names(is.nan(r)), det_lim[1, "x5"], Inf))

        # compute mu, sigma to use for conditional MVN
        ## if all values are missing
        if(length(names(obs) == 0) {
            mu_mis <- mu1
            sigma_mis <- sigma11
        ## otherwise
            } else {
                mu_mis <- mu1 + sigma12 %*% solve(sigma22) * (obs - t(mu2))
                sigma_mis <- sigma11 - sigma12 %*% solve(sigma22) %*% sigma21
        }

        # imputation
        ## if all data are observed, missing is empty
        if(length(obs) == 0) {
            mis_impute <- data.frame()
        ## only need to impute a single value
            } else if(length(names(mis)) == 1) {       
                  mis_impute <- rtnorm(1, mean = mu_mis, sd = sigma_mis, lower = -Inf, upper = dl)
        ## have more than one missing value         
                  } else {
                      mis_impute <- rtmvnorm(1, mean = mu_mis, sigma = sigma_mis, lower = rep(-Inf, length = length(names(mis))), upper = dl)
        }

       # merge observed values with simulated 
       ## if all values observed   
       if(length(names(mis)) == 0) {
           sim_result <- obs
           } else {
                 sim_result <- cbind(mis_impute, obs) 
       }

       imputedDF <- rbind(imputedDF, sim_result)
    }

    # update theta
    v <- solve(solve(Sigma0) + nrow(sim_result)*Tau)
    m <- v %*% (solve(Sigma0) %*% theta0 + Tau %*% apply(sim_result,2,sum))
    mu <- as.data.frame(rmvnorm(1,m,v))
    mu_MCMC[i,] <- mu

    # update Sigma
    tmp <- t(sim_result) - mu
    Tau <- rwish(nu0 + nrow(sim_result), solve(S0 + t(tmp) %*% tmp)) 
    sigma <- matrix(c(solve(Tau)), nrow = 5, ncol = 5, byrow = TRUE)
    cov_MCMC[i,] <- c(solve(Tau))
}

我一直遇到错误,因为插补会返回NaN和NA值,但我无法弄清楚出了什么问题,因为当我只使用内部循环来测试数据时,它似乎有效。因此,问题似乎是参数更新,但我无法弄清楚!

1 个答案:

答案 0 :(得分:8)

序言:

我的感觉是,这里的部分问题是我们没有一个好的示例数据集。

我的感觉是,我们可以通过创建示例数据集来解决解决方案的讨论来解决此问题。为此,一个有用的软件包是Wakefield软件包,它允许创建模拟数据集。

例如,我们可以创建一个2000个人的数据集,其中缺少一些年龄,性别,就业状况,教育数据和婚姻状况信息。

输入

核心问题是我们可以从数据集中的其他数据中估算年龄或性别吗?

例如,如果我们不知道某人的年龄,我们可以根据其婚姻状况,就业类型和/或受教育程度来估算年龄吗?在非常简单的级别上,我们可以简单地搜索带有NA的年龄条目,然后查看婚姻状况。如果婚姻状况为“已婚”,则我们推测我们的数据集适用于美国人,并查看结婚的平均年龄,并用已婚人士的估计年龄代替。

我们可以对此进行扩展,并通过考虑更多变量来使我们的估算更加准确。例如,我们可能同时考虑婚姻状况,教育水平和就业状况,以进一步改善我们的年龄估计。如果某人已结婚,拥有博士学位并退休,我们将年龄推高。如果一个人单身,我们将学生年龄推低。除此之外,我们可以查看数据集中的年龄分布,以估算有关缺失值的数据。

生成示例数据集。

# packages

requiredPackages <- c("wakefield", "dplyr", "BaylorEdPsych", "mice", "MCMCpack")

ipak <- function(pkg) {
  new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
  if (length(new.pkg)) {
    install.packages(new.pkg, dependencies = TRUE)
  }
  sapply(pkg, require, character.only = TRUE)
}

ipak(requiredPackages)

# generate some data for Males with a 8% missing value for
# age

set.seed(10)
f.df <- r_data_frame(n = 1000, age,
                    gender(x = c("M", "F"), prob = c(0, 1), name = "Gender"),
                    employment(x = c("Full Time", "Part Time", "Unemployed", "Retired", "Student"), prob = c(0.6, 0.1, 0.1, 0.1, 0.1), name = "Employment"),
                    education(x = c("No Schooling Completed", "Nursery School to 8th Grade", "9th Grade to 12th Grade, No Diploma",
                                    "Regular High School Diploma", "GED or Alternative Credential", "Some College, Less than 1 Year", "Some College, 1 or More Years, No Degree",
                                    "Associate's Degree", "Bachelor's Degree", "Master's Degree", "Professional School Degree", "Doctorate Degree"),
                                    prob = c(0.013, 0.05, 0.085, 0.246, 0.039, 0.064, 0.15, 0.075, 0.176, 0.072, 0.019, 0.012), name = "Education"),
                    marital(x = c("Married", "Divorced", "Widowed", "Separated", "Never Married"), prob = NULL, name = "Marital")) %>% r_na(cols = 1 - 3, prob = 0.05)

# str(f.df)
summary(f.df)
set.seed(20)

# generate some data for Females with a 5% missing value for
# age

m.df <- r_data_frame(n = 1000, age,
                     gender(x = c("M", "F"), prob = c(1, 0), name = "Gender"),
                     employment(x = c("Full Time", "Part Time", "Unemployed", "Retired", "Student"), prob = c(0.6, 0.1, 0.1, 0.1, 0.1), name = "Employment"),
                     education(x = c("No Schooling Completed", "Nursery School to 8th Grade", "9th Grade to 12th Grade, No Diploma",
                                      "Regular High School Diploma", "GED or Alternative Credential", "Some College, Less than 1 Year", "Some College, 1 or More Years, No Degree",
                                      "Associate's Degree", "Bachelor's Degree", "Master's Degree", "Professional School Degree", "Doctorate Degree"),
                                      prob = c(0.013,0.05, 0.085, 0.246, 0.039, 0.064, 0.15, 0.075, 0.176, 0.072,0.019, 0.012), name = "Education"),
                     marital(x = c("Married", "Divorced", "Widowed", "Separated", "Never Married"), prob = NULL, name = "Marital")) %>% r_na(cols = 1 - 3, prob = 0.03)

summary(m.df)

all.df = rbind.data.frame(m.df, f.df)

summary(all.df)

数据摘要

> summary(all.df)
      Age        Gender        Employment                                      Education            Marital   
 Min.   :18.00   M:1000   Full Time :1142   Regular High School Diploma             :459   Married      :394  
 1st Qu.:35.00   F:1000   Part Time : 207   Bachelor's Degree                       :356   Divorced     :378  
 Median :54.00            Unemployed: 193   Some College, 1 or More Years, No Degree:284   Widowed      :411  
 Mean   :53.76            Retired   : 182   9th Grade to 12th Grade, No Diploma     :156   Separated    :379  
 3rd Qu.:72.00            Student   : 196   Associate's Degree                      :145   Never Married:358  
 Max.   :89.00            NA's      :  80   (Other)                                 :520   NA's         : 80  
 NA's   :80                                 NA's                                    : 80                      
> 

数据是随机完全丢失还是随机丢失?

# Test for MCAR - Missing at Completely at Random...
test_mcar <- LittleMCAR(all.df)
print(test_mcar$amount.missing)
print(test_mcar$p.value)

控制台输出

> # Test for MCAR - Missing at Completely at Random...
> test_mcar <- LittleMCAR(all.df)
this could take a while> print(test_mcar$amount.missing)
                  Age Gender Employment Education Marital
Number Missing  80.00      0      80.00     80.00   80.00
Percent Missing  0.04      0       0.04      0.04    0.04
> print(test_mcar$p.value)
[1] 0.02661428

数据输入

好吧,让我们首先看看缺失值的分布。我们可以运行mice::md.pattern()函数,以显示缺失值在数据框中其他列上的分布。 md.pattern()函数的输出对于建议哪些变量可能是估算缺失值的最佳选择很有用:

> md.pattern(all.df)
     Gender Age Employment Education Marital    
1696      1   1          1         1       1   0
73        1   1          1         1       0   1
73        1   1          1         0       1   1
2         1   1          1         0       0   2
71        1   1          0         1       1   1
3         1   1          0         1       0   2
2         1   1          0         0       1   2
71        1   0          1         1       1   1
2         1   0          1         1       0   2
3         1   0          1         0       1   2
4         1   0          0         1       1   2
          0  80         80        80      80 320

好吧,现在我们可以推断出缺失的值:

imp <- mice(all.df, m = 5, maxit = 50, seed = 1234, printFlag = FALSE)
  • m = 5参数指定您最终获得了变量的五个可能的推论
  • maxit = 50参数指定在算法收敛到解之前将进行多达50次迭代,并且可以向上或向下调整至所需的精度

mouses()函数可能需要一段时间,具体取决于我们指定的迭代次数。在这种情况下,完成后,我们可以使用head()函数查看Age的一些估算值:

head(imp$imp$Age)
     1  2  3  4  5
7   28 49 37 70 89
33  55 54 52 88 24
56  89 83 68 71 61
84  43 43 24 30 31
96  28 64 89 41 50
120 47 34 36 22 77

要实际完成插补,我们必须运行complete()函数并将结果分配给新的数据框。此版本的complete()函数将通过“ long”参数收集分配的数据框中的所有插补:

all_imputed_df <- complete(imp, "long", include = TRUE)
table(all_imputed_df$.imp, is.na(all_imputed_df$Age))

控制台:

> all_imputed_df <- complete(imp, "long", include = TRUE)
> table(all_imputed_df$.imp, is.na(all_imputed_df$Age))

    FALSE TRUE
  0  1920   80
  1  2000    0
  2  2000    0
  3  2000    0
  4  2000    0
  5  2000    0

现在,我们拥有一个包含5个年龄输入值的12000个年龄值的数据集。

让我们尝试使用插补#3进行回归。

首先,提取归因#3

impute.3 <- subset(all_imputed_df,.imp=='3')  
summary(impute.3)

控制台:

> impute.3 <- subset(all_imputed_df, .imp == "3")
> summary(impute.3)
      .imp        .id              Age        Gender        Employment  
 Min.   :3   Min.   :   1.0   Min.   :18.00   M:1000   Full Time :1192  
 1st Qu.:3   1st Qu.: 500.8   1st Qu.:35.00   F:1000   Part Time : 211  
 Median :3   Median :1000.5   Median :54.00            Unemployed: 202  
 Mean   :3   Mean   :1000.5   Mean   :53.89            Retired   : 191  
 3rd Qu.:3   3rd Qu.:1500.2   3rd Qu.:72.00            Student   : 204  
 Max.   :3   Max.   :2000.0   Max.   :89.00                             

                                    Education            Marital   
 Regular High School Diploma             :478   Married      :416  
 Bachelor's Degree                       :376   Divorced     :390  
 Some College, 1 or More Years, No Degree:295   Widowed      :425  
 9th Grade to 12th Grade, No Diploma     :168   Separated    :393  
 Associate's Degree                      :150   Never Married:376  
 Master's Degree                         :141                      
 (Other)                                 :392 

现在我们可以进行线性回归:

> lm(Age ~ Education + Gender + Employment + Marital, data = impute.3)

Call:
lm(formula = Age ~ Education + Gender + Employment + Marital, 
    data = impute.3)

Coefficients:
                                      (Intercept)               EducationNursery School to 8th Grade  
                                          51.6733                                             1.4100  
     Education9th Grade to 12th Grade, No Diploma               EducationRegular High School Diploma  
                                           1.3675                                             0.7611  
           EducationGED or Alternative Credential            EducationSome College, Less than 1 Year  
                                           1.0365                                            -2.6069  
EducationSome College, 1 or More Years, No Degree                        EducationAssociate's Degree  
                                           0.3563                                             0.9506  
                       EducationBachelor's Degree                           EducationMaster's Degree  
                                           1.2505                                            -1.6372  
              EducationProfessional School Degree                          EducationDoctorate Degree  
                                           1.1774                                             0.4936  
                                          GenderF                                EmploymentPart Time  
                                          -0.3190                                             1.1316  
                             EmploymentUnemployed                                  EmploymentRetired  
                                           3.1622                                            -0.6855  
                                EmploymentStudent                                    MaritalDivorced  
                                           3.0850                                             0.2934  
                                   MaritalWidowed                                   MaritalSeparated  
                                           2.3162                                             1.6833  
                             MaritalNever Married  
                                           1.6169  

MCMCRegress

library(MCMCpack) # b0 = prior mean, B0 = prior precision = 1/variance
fitBayes <- MCMCregress(Age ~ Education + Gender + Employment + Marital, data = impute.3, mcmc = 10000, seed = 1234, b0 = 0, B0 = 0.01, drop.unused.levels = TRUE)
summary(fitBayes)

控制台输出

> fitBayes <- MCMCregress(Age ~ Education + Gender + Employment + Marital, data = impute.3, mcmc = 10000, seed = 1234, b0 = 0, B0 = 0.01, drop.unused.levels = TRUE)
> summary(fitBayes)

Iterations = 1001:11000
Thinning interval = 1 
Number of chains = 1 
Sample size per chain = 10000 

1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:

                                                       Mean      SD Naive SE Time-series SE
(Intercept)                                        48.67377  2.5337 0.025337       0.025337
EducationNursery School to 8th Grade                3.77088  3.0514 0.030514       0.030514
Education9th Grade to 12th Grade, No Diploma        3.81009  2.7794 0.027794       0.027794
EducationRegular High School Diploma                3.24531  2.4933 0.024933       0.025412
EducationGED or Alternative Credential              3.38733  3.2155 0.032155       0.032155
EducationSome College, Less than 1 Year            -0.08419  2.9104 0.029104       0.029577
EducationSome College, 1 or More Years, No Degree   2.82889  2.6092 0.026092       0.026092
EducationAssociate's Degree                         3.32932  2.8410 0.028410       0.028410
EducationBachelor's Degree                          3.72272  2.5228 0.025228       0.025659
EducationMaster's Degree                            0.87738  2.8611 0.028611       0.028611
EducationProfessional School Degree                 3.27542  4.0199 0.040199       0.040199
EducationDoctorate Degree                           2.43794  4.5996 0.045996       0.045996
GenderF                                            -0.11321  0.9327 0.009327       0.009327
EmploymentPart Time                                 1.25556  1.5756 0.015756       0.016170
EmploymentUnemployed                                3.27395  1.6213 0.016213       0.015708
EmploymentRetired                                  -0.52614  1.6394 0.016394       0.016394
EmploymentStudent                                   3.17027  1.6058 0.016058       0.016889
MaritalDivorced                                     0.72379  1.4715 0.014715       0.014715
MaritalWidowed                                      2.73130  1.4394 0.014394       0.014706
MaritalSeparated                                    2.10423  1.4608 0.014608       0.014608
MaritalNever Married                                2.00781  1.4960 0.014960       0.014960
sigma2                                            448.01488 14.0715 0.140715       0.140715

2. Quantiles for each variable:

                                                       2.5%      25%      50%      75%   97.5%
(Intercept)                                        43.75477  46.9556  48.6619  50.3967  53.609
EducationNursery School to 8th Grade               -2.19290   1.7079   3.7701   5.8216   9.718
Education9th Grade to 12th Grade, No Diploma       -1.59323   1.9586   3.8326   5.6676   9.349
EducationRegular High School Diploma               -1.61001   1.5641   3.2474   4.9296   8.155
EducationGED or Alternative Credential             -2.88523   1.2095   3.4173   5.5405   9.691
EducationSome College, Less than 1 Year            -5.75364  -2.0617  -0.1009   1.8986   5.614
EducationSome College, 1 or More Years, No Degree  -2.28754   1.0853   2.8608   4.5718   7.895
EducationAssociate's Degree                        -2.27611   1.4311   3.3285   5.2330   8.978
EducationBachelor's Degree                         -1.21780   2.0258   3.7275   5.4203   8.655
EducationMaster's Degree                           -4.61270  -1.0872   0.8601   2.8484   6.456
EducationProfessional School Degree                -4.63027   0.5900   3.2767   5.9475  11.059
EducationDoctorate Degree                          -6.47767  -0.6371   2.4553   5.4188  11.705
GenderF                                            -1.95673  -0.7298  -0.1067   0.4903   1.727
EmploymentPart Time                                -1.82784   0.1849   1.2597   2.3160   4.354
EmploymentUnemployed                                0.09335   2.1988   3.2674   4.3557   6.433
EmploymentRetired                                  -3.80162  -1.6316  -0.5147   0.5953   2.706
EmploymentStudent                                   0.03387   2.0713   3.1502   4.2227   6.342
MaritalDivorced                                    -2.15073  -0.2732   0.7249   1.7266   3.602
MaritalWidowed                                     -0.13488   1.7817   2.7367   3.6961   5.567
MaritalSeparated                                   -0.76396   1.1177   2.1118   3.0700   5.001
MaritalNever Married                               -0.92230   0.9950   1.9976   3.0248   4.898
sigma2                                            420.98019 438.4621 447.7222 457.2730 476.481

希望上面的观察指向正确的方向。

引用: