我有一个包含随机丢失(MAR)和删失数据的数据集。变量是相关的,我试图有条件地估算缺失的数据,以便我可以估计相关的多元正态分布的分布参数。我想使用Gibbs MCMC,但是我很难实现这个程序。我的数据框有5个变量(表示为x1:x5),1099个样本包含MAR,删失和观察值的某种组合。这是我到目前为止所尝试的:
# packages
library(msm, tmvtnorm, MCMCpack)
# priors
theta0<-c(rep(0, 5))
Sigma0<-S0<-diag(5)
nu0<-4
# initialize parameters
theta<-c(rep(0, 5))
Tau<-diag(5)
# initialize output matrix
n_samples <- 1000
mu_MCMC <- matrix(0, nrow = n_samples, ncol = 5)
mu_MCMC[1,] <- theta
cov_MCMC <- matrix(0, nrow = n_samples, ncol = 25)
cov_MCMC[1,] <- c(diag(5))
# detection limits
det_lim <- matrix(c(-1.7, 0, 0, 0, 0), nrow = 1, ncol = 5)
# function to detect NaN (i.e., below detection data)
is.nan.data.frame <- function(x)
do.call(cbind, lapply(x, is.nan))
for(i in 2:n_samples){
imputedDF <- data.frame()
for(r in 1:nrow(originalDF)){
# variables that are MAR or censored
mis <- r[, is.na(r) & is.nan(r)]
# variables that are observed
obs <- r[, !is.na(r)]
# subset mu for missing, observed
mu1 <- mu[, names(r) %in% names(mis)]
mu2 <- mu[, names(r) %in% names(obs)]
# calculate sigmas for MVN partitions of mis, obs
sigma11 <- sigma[names(r) %in% names(mis), names(r) %in% names(mis)]
sigma22 <- sigma[names(r) %in% names(obs), names(r) %in% names(obs)]
sigma12 <- sigma[names(r) %in% names(obs), names(r) %in% names(mis)]
sigma21 <- t(sigma12)
# create matrix for detection limits based on missing values
## if NaN, use detection limit; if NA use Inf
dl <- c(ifelse("x1" %in% names(is.nan(r)), det_lim[1, "x1"], Inf),
ifelse("x2" %in% names(is.nan(r)), det_lim[1, "x2"], Inf),
ifelse("x3" %in% names(is.nan(r)), det_lim[1, "x3"], Inf),
ifelse("x4" %in% names(is.nan(r)), det_lim[1, "x4"], Inf),
ifelse("x5" %in% names(is.nan(r)), det_lim[1, "x5"], Inf))
# compute mu, sigma to use for conditional MVN
## if all values are missing
if(length(names(obs) == 0) {
mu_mis <- mu1
sigma_mis <- sigma11
## otherwise
} else {
mu_mis <- mu1 + sigma12 %*% solve(sigma22) * (obs - t(mu2))
sigma_mis <- sigma11 - sigma12 %*% solve(sigma22) %*% sigma21
}
# imputation
## if all data are observed, missing is empty
if(length(obs) == 0) {
mis_impute <- data.frame()
## only need to impute a single value
} else if(length(names(mis)) == 1) {
mis_impute <- rtnorm(1, mean = mu_mis, sd = sigma_mis, lower = -Inf, upper = dl)
## have more than one missing value
} else {
mis_impute <- rtmvnorm(1, mean = mu_mis, sigma = sigma_mis, lower = rep(-Inf, length = length(names(mis))), upper = dl)
}
# merge observed values with simulated
## if all values observed
if(length(names(mis)) == 0) {
sim_result <- obs
} else {
sim_result <- cbind(mis_impute, obs)
}
imputedDF <- rbind(imputedDF, sim_result)
}
# update theta
v <- solve(solve(Sigma0) + nrow(sim_result)*Tau)
m <- v %*% (solve(Sigma0) %*% theta0 + Tau %*% apply(sim_result,2,sum))
mu <- as.data.frame(rmvnorm(1,m,v))
mu_MCMC[i,] <- mu
# update Sigma
tmp <- t(sim_result) - mu
Tau <- rwish(nu0 + nrow(sim_result), solve(S0 + t(tmp) %*% tmp))
sigma <- matrix(c(solve(Tau)), nrow = 5, ncol = 5, byrow = TRUE)
cov_MCMC[i,] <- c(solve(Tau))
}
我一直遇到错误,因为插补会返回NaN和NA值,但我无法弄清楚出了什么问题,因为当我只使用内部循环来测试数据时,它似乎有效。因此,问题似乎是参数更新,但我无法弄清楚!
答案 0 :(得分:8)
我的感觉是,这里的部分问题是我们没有一个好的示例数据集。
我的感觉是,我们可以通过创建示例数据集来解决解决方案的讨论来解决此问题。为此,一个有用的软件包是Wakefield软件包,它允许创建模拟数据集。
例如,我们可以创建一个2000个人的数据集,其中缺少一些年龄,性别,就业状况,教育数据和婚姻状况信息。
核心问题是我们可以从数据集中的其他数据中估算年龄或性别吗?
例如,如果我们不知道某人的年龄,我们可以根据其婚姻状况,就业类型和/或受教育程度来估算年龄吗?在非常简单的级别上,我们可以简单地搜索带有NA的年龄条目,然后查看婚姻状况。如果婚姻状况为“已婚”,则我们推测我们的数据集适用于美国人,并查看结婚的平均年龄,并用已婚人士的估计年龄代替。
我们可以对此进行扩展,并通过考虑更多变量来使我们的估算更加准确。例如,我们可能同时考虑婚姻状况,教育水平和就业状况,以进一步改善我们的年龄估计。如果某人已结婚,拥有博士学位并退休,我们将年龄推高。如果一个人单身,我们将学生年龄推低。除此之外,我们可以查看数据集中的年龄分布,以估算有关缺失值的数据。
# packages
requiredPackages <- c("wakefield", "dplyr", "BaylorEdPsych", "mice", "MCMCpack")
ipak <- function(pkg) {
new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
if (length(new.pkg)) {
install.packages(new.pkg, dependencies = TRUE)
}
sapply(pkg, require, character.only = TRUE)
}
ipak(requiredPackages)
# generate some data for Males with a 8% missing value for
# age
set.seed(10)
f.df <- r_data_frame(n = 1000, age,
gender(x = c("M", "F"), prob = c(0, 1), name = "Gender"),
employment(x = c("Full Time", "Part Time", "Unemployed", "Retired", "Student"), prob = c(0.6, 0.1, 0.1, 0.1, 0.1), name = "Employment"),
education(x = c("No Schooling Completed", "Nursery School to 8th Grade", "9th Grade to 12th Grade, No Diploma",
"Regular High School Diploma", "GED or Alternative Credential", "Some College, Less than 1 Year", "Some College, 1 or More Years, No Degree",
"Associate's Degree", "Bachelor's Degree", "Master's Degree", "Professional School Degree", "Doctorate Degree"),
prob = c(0.013, 0.05, 0.085, 0.246, 0.039, 0.064, 0.15, 0.075, 0.176, 0.072, 0.019, 0.012), name = "Education"),
marital(x = c("Married", "Divorced", "Widowed", "Separated", "Never Married"), prob = NULL, name = "Marital")) %>% r_na(cols = 1 - 3, prob = 0.05)
# str(f.df)
summary(f.df)
set.seed(20)
# generate some data for Females with a 5% missing value for
# age
m.df <- r_data_frame(n = 1000, age,
gender(x = c("M", "F"), prob = c(1, 0), name = "Gender"),
employment(x = c("Full Time", "Part Time", "Unemployed", "Retired", "Student"), prob = c(0.6, 0.1, 0.1, 0.1, 0.1), name = "Employment"),
education(x = c("No Schooling Completed", "Nursery School to 8th Grade", "9th Grade to 12th Grade, No Diploma",
"Regular High School Diploma", "GED or Alternative Credential", "Some College, Less than 1 Year", "Some College, 1 or More Years, No Degree",
"Associate's Degree", "Bachelor's Degree", "Master's Degree", "Professional School Degree", "Doctorate Degree"),
prob = c(0.013,0.05, 0.085, 0.246, 0.039, 0.064, 0.15, 0.075, 0.176, 0.072,0.019, 0.012), name = "Education"),
marital(x = c("Married", "Divorced", "Widowed", "Separated", "Never Married"), prob = NULL, name = "Marital")) %>% r_na(cols = 1 - 3, prob = 0.03)
summary(m.df)
all.df = rbind.data.frame(m.df, f.df)
summary(all.df)
> summary(all.df)
Age Gender Employment Education Marital
Min. :18.00 M:1000 Full Time :1142 Regular High School Diploma :459 Married :394
1st Qu.:35.00 F:1000 Part Time : 207 Bachelor's Degree :356 Divorced :378
Median :54.00 Unemployed: 193 Some College, 1 or More Years, No Degree:284 Widowed :411
Mean :53.76 Retired : 182 9th Grade to 12th Grade, No Diploma :156 Separated :379
3rd Qu.:72.00 Student : 196 Associate's Degree :145 Never Married:358
Max. :89.00 NA's : 80 (Other) :520 NA's : 80
NA's :80 NA's : 80
>
# Test for MCAR - Missing at Completely at Random...
test_mcar <- LittleMCAR(all.df)
print(test_mcar$amount.missing)
print(test_mcar$p.value)
> # Test for MCAR - Missing at Completely at Random...
> test_mcar <- LittleMCAR(all.df)
this could take a while> print(test_mcar$amount.missing)
Age Gender Employment Education Marital
Number Missing 80.00 0 80.00 80.00 80.00
Percent Missing 0.04 0 0.04 0.04 0.04
> print(test_mcar$p.value)
[1] 0.02661428
好吧,让我们首先看看缺失值的分布。我们可以运行mice::md.pattern()函数,以显示缺失值在数据框中其他列上的分布。 md.pattern()
函数的输出对于建议哪些变量可能是估算缺失值的最佳选择很有用:
> md.pattern(all.df)
Gender Age Employment Education Marital
1696 1 1 1 1 1 0
73 1 1 1 1 0 1
73 1 1 1 0 1 1
2 1 1 1 0 0 2
71 1 1 0 1 1 1
3 1 1 0 1 0 2
2 1 1 0 0 1 2
71 1 0 1 1 1 1
2 1 0 1 1 0 2
3 1 0 1 0 1 2
4 1 0 0 1 1 2
0 80 80 80 80 320
好吧,现在我们可以推断出缺失的值:
imp <- mice(all.df, m = 5, maxit = 50, seed = 1234, printFlag = FALSE)
mouses()函数可能需要一段时间,具体取决于我们指定的迭代次数。在这种情况下,完成后,我们可以使用head()函数查看Age的一些估算值:
head(imp$imp$Age)
1 2 3 4 5
7 28 49 37 70 89
33 55 54 52 88 24
56 89 83 68 71 61
84 43 43 24 30 31
96 28 64 89 41 50
120 47 34 36 22 77
要实际完成插补,我们必须运行complete()
函数并将结果分配给新的数据框。此版本的complete()
函数将通过“ long”参数收集分配的数据框中的所有插补:
all_imputed_df <- complete(imp, "long", include = TRUE)
table(all_imputed_df$.imp, is.na(all_imputed_df$Age))
> all_imputed_df <- complete(imp, "long", include = TRUE)
> table(all_imputed_df$.imp, is.na(all_imputed_df$Age))
FALSE TRUE
0 1920 80
1 2000 0
2 2000 0
3 2000 0
4 2000 0
5 2000 0
现在,我们拥有一个包含5个年龄输入值的12000个年龄值的数据集。
让我们尝试使用插补#3进行回归。
首先,提取归因#3
impute.3 <- subset(all_imputed_df,.imp=='3')
summary(impute.3)
> impute.3 <- subset(all_imputed_df, .imp == "3")
> summary(impute.3)
.imp .id Age Gender Employment
Min. :3 Min. : 1.0 Min. :18.00 M:1000 Full Time :1192
1st Qu.:3 1st Qu.: 500.8 1st Qu.:35.00 F:1000 Part Time : 211
Median :3 Median :1000.5 Median :54.00 Unemployed: 202
Mean :3 Mean :1000.5 Mean :53.89 Retired : 191
3rd Qu.:3 3rd Qu.:1500.2 3rd Qu.:72.00 Student : 204
Max. :3 Max. :2000.0 Max. :89.00
Education Marital
Regular High School Diploma :478 Married :416
Bachelor's Degree :376 Divorced :390
Some College, 1 or More Years, No Degree:295 Widowed :425
9th Grade to 12th Grade, No Diploma :168 Separated :393
Associate's Degree :150 Never Married:376
Master's Degree :141
(Other) :392
现在我们可以进行线性回归:
> lm(Age ~ Education + Gender + Employment + Marital, data = impute.3)
Call:
lm(formula = Age ~ Education + Gender + Employment + Marital,
data = impute.3)
Coefficients:
(Intercept) EducationNursery School to 8th Grade
51.6733 1.4100
Education9th Grade to 12th Grade, No Diploma EducationRegular High School Diploma
1.3675 0.7611
EducationGED or Alternative Credential EducationSome College, Less than 1 Year
1.0365 -2.6069
EducationSome College, 1 or More Years, No Degree EducationAssociate's Degree
0.3563 0.9506
EducationBachelor's Degree EducationMaster's Degree
1.2505 -1.6372
EducationProfessional School Degree EducationDoctorate Degree
1.1774 0.4936
GenderF EmploymentPart Time
-0.3190 1.1316
EmploymentUnemployed EmploymentRetired
3.1622 -0.6855
EmploymentStudent MaritalDivorced
3.0850 0.2934
MaritalWidowed MaritalSeparated
2.3162 1.6833
MaritalNever Married
1.6169
library(MCMCpack) # b0 = prior mean, B0 = prior precision = 1/variance
fitBayes <- MCMCregress(Age ~ Education + Gender + Employment + Marital, data = impute.3, mcmc = 10000, seed = 1234, b0 = 0, B0 = 0.01, drop.unused.levels = TRUE)
summary(fitBayes)
> fitBayes <- MCMCregress(Age ~ Education + Gender + Employment + Marital, data = impute.3, mcmc = 10000, seed = 1234, b0 = 0, B0 = 0.01, drop.unused.levels = TRUE)
> summary(fitBayes)
Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
(Intercept) 48.67377 2.5337 0.025337 0.025337
EducationNursery School to 8th Grade 3.77088 3.0514 0.030514 0.030514
Education9th Grade to 12th Grade, No Diploma 3.81009 2.7794 0.027794 0.027794
EducationRegular High School Diploma 3.24531 2.4933 0.024933 0.025412
EducationGED or Alternative Credential 3.38733 3.2155 0.032155 0.032155
EducationSome College, Less than 1 Year -0.08419 2.9104 0.029104 0.029577
EducationSome College, 1 or More Years, No Degree 2.82889 2.6092 0.026092 0.026092
EducationAssociate's Degree 3.32932 2.8410 0.028410 0.028410
EducationBachelor's Degree 3.72272 2.5228 0.025228 0.025659
EducationMaster's Degree 0.87738 2.8611 0.028611 0.028611
EducationProfessional School Degree 3.27542 4.0199 0.040199 0.040199
EducationDoctorate Degree 2.43794 4.5996 0.045996 0.045996
GenderF -0.11321 0.9327 0.009327 0.009327
EmploymentPart Time 1.25556 1.5756 0.015756 0.016170
EmploymentUnemployed 3.27395 1.6213 0.016213 0.015708
EmploymentRetired -0.52614 1.6394 0.016394 0.016394
EmploymentStudent 3.17027 1.6058 0.016058 0.016889
MaritalDivorced 0.72379 1.4715 0.014715 0.014715
MaritalWidowed 2.73130 1.4394 0.014394 0.014706
MaritalSeparated 2.10423 1.4608 0.014608 0.014608
MaritalNever Married 2.00781 1.4960 0.014960 0.014960
sigma2 448.01488 14.0715 0.140715 0.140715
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
(Intercept) 43.75477 46.9556 48.6619 50.3967 53.609
EducationNursery School to 8th Grade -2.19290 1.7079 3.7701 5.8216 9.718
Education9th Grade to 12th Grade, No Diploma -1.59323 1.9586 3.8326 5.6676 9.349
EducationRegular High School Diploma -1.61001 1.5641 3.2474 4.9296 8.155
EducationGED or Alternative Credential -2.88523 1.2095 3.4173 5.5405 9.691
EducationSome College, Less than 1 Year -5.75364 -2.0617 -0.1009 1.8986 5.614
EducationSome College, 1 or More Years, No Degree -2.28754 1.0853 2.8608 4.5718 7.895
EducationAssociate's Degree -2.27611 1.4311 3.3285 5.2330 8.978
EducationBachelor's Degree -1.21780 2.0258 3.7275 5.4203 8.655
EducationMaster's Degree -4.61270 -1.0872 0.8601 2.8484 6.456
EducationProfessional School Degree -4.63027 0.5900 3.2767 5.9475 11.059
EducationDoctorate Degree -6.47767 -0.6371 2.4553 5.4188 11.705
GenderF -1.95673 -0.7298 -0.1067 0.4903 1.727
EmploymentPart Time -1.82784 0.1849 1.2597 2.3160 4.354
EmploymentUnemployed 0.09335 2.1988 3.2674 4.3557 6.433
EmploymentRetired -3.80162 -1.6316 -0.5147 0.5953 2.706
EmploymentStudent 0.03387 2.0713 3.1502 4.2227 6.342
MaritalDivorced -2.15073 -0.2732 0.7249 1.7266 3.602
MaritalWidowed -0.13488 1.7817 2.7367 3.6961 5.567
MaritalSeparated -0.76396 1.1177 2.1118 3.0700 5.001
MaritalNever Married -0.92230 0.9950 1.9976 3.0248 4.898
sigma2 420.98019 438.4621 447.7222 457.2730 476.481
希望上面的观察指向正确的方向。