用分类均值估算缺失值?

时间:2019-03-19 19:45:07

标签: r statistics imputation

我有一个包含几列的数据集,其中一列缺少所需的数据块。

缺少数据的列df $ Variable始终归因于特定的人df $ Name。每当df $ Variable中缺少数据时,是否有一种方法可以估算每个人的平均值,而不是整个数据集的平均值?

我一直在使用imputeTS库。

2 个答案:

答案 0 :(得分:1)

在没有可重复的示例的情况下,很难做出明确的回答,但是考虑到您的发言,这样的事情应该起作用:

library('tidyverse')

df <- data.frame(Name = c(rep("A", 5), rep("B", 5)),
                 Variable = sample(c(1, 2, 3, NA), 10, replace = TRUE))

df %>%
  group_by(Name) %>%
  mutate(non_na_mean = mean(Variable, na.rm = T)) %>%
  ungroup() %>%
  mutate(newVariable = ifelse(is.na(Variable), non_na_mean, Variable))

答案 1 :(得分:0)

如果没有看到您的数据框,我相信这会起作用。

set.seed(7)
# make some fake data
df <- data.frame(Name = rep(as.character(c("A", "B", "C", "D")), 10), Variable = sample(1:100, 40))
# change some to NA
df[which(df$Variable > 40),"Variable"] <- NA

# Fill in NA's for D with the mean of D
df[which(df$Name == "D" & is.na(df$Variable)),"Variable"] <-
  mean(df[which(df$Name == "D"),"Variable"], na.rm = TRUE)

您还可以遍历其他“变量”

variable_vec <- c("A", "B", "C", "D")
for(i in 1:length(variable_vec)){
df[which(df$Name == i & is.na(df$Variable)),"Variable"] <-
  mean(df[which(df$Name == i),"Variable"], na.rm = TRUE)
}