我最近尝试了3个元素的最高产品的问题。现在我正在尝试为k元素做这件事。让我们从现在开始说它需要4个元素。我试着编写一个泛型函数,以便它可以处理数组中的任何k元素。算法必须在O(n)中,就像有3个元素的算法一样。
def highest_product_sol(input):
high = max(input[0],input[1])
low = min(input[0],input[1])
max_prod_2 = input[0] * input[1]
low_prod_2 = input[0] * input[1]
max_prod_3 = max_prod_2 * input[2]
prod_2_high = input[0] * input[1]
prod_2_low = input[0] * input[1]
for i in range(2,len(input)):
val = input[i]
max_prod_3 = max(max_prod_3,max_prod_2*val,low_prod_2*val)
prod_2_high = high * val
prod_2_low = low * val
max_prod_2 = max(max_prod_2,prod_2_high)
low_prod_2 = min(low_prod_2,prod_2_high)
high = max(high,val)
low = min(low,val)
return (max_prod_2,low_prod_2,max_prod_3)
def highest_product_num(input,num):
high = max(input[0:num - 1])
low = min(input[0:num - 1])
print("max",high)
print("min",low)
prod_high_minus_1 = 1
prod_low_minus_1 = 1
for n in range(0,num-1):
prod_high_minus_1 *= input[n]
prod_low_minus_1 *= input[n]
max_prod_n_1 = prod_high_minus_1
min_prod_n_1 = prod_high_minus_1
max_prod_n = prod_high_minus_1 * input[num-1]
for i in range(num,len(input)):
val = input[i]
max_prod_n = max(max_prod_n,max_prod_n_1*val,min_prod_n_1*val)
prod_high_minus_1 = high * val
prod_low_minus_1 = low * val
max_prod_n_1 = max(max_prod_n_1,prod_high_minus_1)
min_prod_n_1 = min(min_prod_n_1,prod_low_minus_1)
high = max(high,val)
low = min(low,val)
return max_prod_n
test_input = [[1,2,3,4,5,6,7,8],[1,-2,3,4,5,100,2,3,1],[-10,-10,1,3,2][1000,7,-6,2,2]]
print(test_input)
for i in test_input:
print(highest_product_num(i,4),"\n")
# correct `results`
# 1680
# 6000
# 600
答案 0 :(得分:3)
bulk_insert
中的O(n)解决方案,在4个示例列表和@Stefan Pochmann的无情自动测试脚本上进行了压力测试。非常感谢Stefan,没有他们的输入,一些严重的错误就会被忽视。
numpy
算法简要说明:
示例运行:
import numpy as np
def kmaxprod_v2(data, k):
if len(data) < k:
return np.nan
data = np.asanyarray(data)
# for integer dtypes convert to python ints to have unlimited range for the
# final product
dfp = data.astype(object) if data.dtype in (
int, np.int64, np.int32, np.int16, np.int8) else data
# np.argpartition raises an exception if len(data) == k, therefore
if len(data) == k:
return np.prod(dfp)
neg = data <= 0
# if k is odd and there are no positive elements we must settle for the
# least negative
if k % 2 == 1 and np.count_nonzero(neg) == len(data):
return np.prod(-np.partition(-data, k)[:k].astype(dfp.dtype))
# now n > k and we have at least one positive element
ap = np.argpartition(-np.absolute(data), k)
low, high = ap[k:], ap[:k]
# try multiplying the k with highest absolute value
greedy = np.prod(dfp[high])
if greedy >= 0:
return greedy
# there are two possible ways of fixing the sign:
# either swap the worst negative inside for the best positive outside
# or swap the worst positive inside for the best negative outside
# compute both and compare
# bpo in, wni out
bpo = np.max(dfp[low])
if bpo <= 0:
spfn = 0
else:
neg_high = np.where(neg[high])[0]
wni_ind = np.argmax(data[high[neg_high]])
# translate to index in high
wni_ind = neg_high[wni_ind]
spfn = bpo*np.prod(dfp[high[:wni_ind]])*np.prod(dfp[high[wni_ind+1:]])
# bno in, wno out
pos_high = np.where(~neg[high])[0]
if len(pos_high) == 0:
snfp = 0
else:
wpi_ind = np.argmin(data[high[pos_high]])
wpi_ind = pos_high[wpi_ind]
bno = np.min(dfp[low])
snfp = bno*np.prod(dfp[high[:wpi_ind]])*np.prod(dfp[high[wpi_ind+1:]])
return max(spfn, snfp)
测试脚本,谢谢@Stefan Pochmann
>>> test_input = [[1,2,3,4,5,6,7,8],[1,-2,3,4,5,100,2,3,1],[-10,-10,1,3,2],[1000,7,-6,2,2]]
>>> for t in test_input:
... kmp.kmaxprod(t,4)
...
1680
6000
600
28000
答案 1 :(得分:1)
from functools import reduce
import operator
def get_largest_product(l,n):
possible_products = [reduce(operator.mul,c,1) for c in combinations(l, n)]
return max(possible_products)
print (get_largest_product([232,434,5,4],3))
输出:
503440