计算是针对游戏的,因此近似值优于计算强度正确计算。我需要找到的是给定弧的半径。
在这种情况下,“曲线”可以被认为是弧形,因为这种近似足够好。所以情况看起来像这样:
我知道:
我需要知道的事情:
背景 - 实际上我需要两个方面的半径:
B
的弧x
的长度。因此B
的r将为r + x
我尝试了什么:
我知道如果我有弧度的圆周和内角,如何计算半径。但我完全坚持使用给定的信息,但我确信它不应该太复杂..
答案 0 :(得分:0)
如果您认为绿线中间有一个直角的三角形,而圆的中心有另一个点,则该三角形中绿色段的交点处的角度为α/ 2,余弦比为那个角度是
cos(α/2)*r = g/2
g绿色部分的长度。
饼图顶部的角度为π-α
,因此对于蓝色曲线段的长度b
,您应该得到
b = (π-α)*r
从两个公式得到的半径值不应该超出预期的测量误差。
答案 1 :(得分:0)
或者,您可以使用Catmull-Rom(https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline),Hermite(https://en.wikipedia.org/wiki/Cubic_Hermite_spline)或自然(https://en.wikipedia.org/wiki/Spline_interpolation)三次样条插值来计算点之间的路径。
这将给出(x,y)坐标的三次多项式,并且很容易得到它们的二阶导数来获得加速度的方向和幅度。